Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment

The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H 2 SO 4  + 0.1 ppm F − solution at 80 °C under different polarization potentials by using electrochemical measuremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2023-08, Vol.27 (8), p.1993-2003
Hauptverfasser: Tan, Zhiqiang, Xu, Ronghai, Bi, Hongyun, Zhang, Zhixia, Li, Moucheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2003
container_issue 8
container_start_page 1993
container_title Journal of solid state electrochemistry
container_volume 27
creator Tan, Zhiqiang
Xu, Ronghai
Bi, Hongyun
Zhang, Zhixia
Li, Moucheng
description The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H 2 SO 4  + 0.1 ppm F − solution at 80 °C under different polarization potentials by using electrochemical measurement methods, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The 446 stainless steel passivates spontaneously in the simulated environment. The current density and interface contact resistance (ICR) enlarge slightly with increasing the anodic polarization potential in the passive region. As the potential changes from 0.7 to 1.5 V vs. SCE, the current density and ICR increase markedly due to the occurrence of transpassivation, secondary passivation, and oxygen evolution. The ICR values are larger by about 24 mΩ cm 2 after the polarization above 0.7 V vs. SCE. The polarization potential shifts from the passive region to oxygen evolution region, resulting in higher oxidized Fe and Mo contents in the product film on specimen surface and relatively more release of alloying constituents (especially Cr and Mo) into the solution. These are mainly responsible for the degradation of corrosion and surface conductivity properties.
doi_str_mv 10.1007/s10008-023-05469-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836960560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836960560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-14765e49bc13762b0e7e8880cf2e822287a8ddb9ca0faf7dc716a9a6edd2eb583</originalsourceid><addsrcrecordid>eNp9UU1PAyEQ3RhN1Oof8ETieRXYLbBH0_iVmHjRM2HZwdLsQgXa2P_ij3W0Jt68DG_Ie28GXlVdMHrFKJXXGStVNeVNTeet6OrdQXXC2gZbKdThD-a1apU6rk5zXlHKpGD0pPq8dQ5sySQ6so4FQvFmJDEQG1OK2SPqYWm2PiZiwoDXoRhbSILsczHBwreybQXBzocRckYEMBIfSPbTZjQFBrJOsaAVfNilCW9AJpj6ZAIQt0GqhRGLKcs4AIGw9SmGCVc5q46cGTOc_56z6vXu9mXxUD893z8ubp5q27Cu1KyVYg5t11vWSMF7ChKUUtQ6DopzrqRRw9B31lBnnBysZMJ0RsAwcOjnqplVl3tfXPN9A7noVdykgCM1V43oBJ0Liiy-Z1n8mJzA6XXyk0k7zaj-TkHvU9CYgv5JQe9Q1OxFGcn48vRn_Y_qC72wjxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836960560</pqid></control><display><type>article</type><title>Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment</title><source>SpringerLink Journals</source><creator>Tan, Zhiqiang ; Xu, Ronghai ; Bi, Hongyun ; Zhang, Zhixia ; Li, Moucheng</creator><creatorcontrib>Tan, Zhiqiang ; Xu, Ronghai ; Bi, Hongyun ; Zhang, Zhixia ; Li, Moucheng</creatorcontrib><description>The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H 2 SO 4  + 0.1 ppm F − solution at 80 °C under different polarization potentials by using electrochemical measurement methods, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The 446 stainless steel passivates spontaneously in the simulated environment. The current density and interface contact resistance (ICR) enlarge slightly with increasing the anodic polarization potential in the passive region. As the potential changes from 0.7 to 1.5 V vs. SCE, the current density and ICR increase markedly due to the occurrence of transpassivation, secondary passivation, and oxygen evolution. The ICR values are larger by about 24 mΩ cm 2 after the polarization above 0.7 V vs. SCE. The polarization potential shifts from the passive region to oxygen evolution region, resulting in higher oxidized Fe and Mo contents in the product film on specimen surface and relatively more release of alloying constituents (especially Cr and Mo) into the solution. These are mainly responsible for the degradation of corrosion and surface conductivity properties.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-023-05469-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Anodic polarization ; Cell cathodes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromium ; Condensed Matter Physics ; Contact resistance ; Corrosion ; Corrosion effects ; Corrosion potential ; Corrosion resistance ; Current density ; Electrochemistry ; Electrode polarization ; Energy Storage ; Evolution ; Fuel cells ; Inductively coupled plasma ; Measurement methods ; Molybdenum ; Optical emission spectroscopy ; Original Paper ; Oxygen ; Photoelectrons ; Physical Chemistry ; Proton exchange membrane fuel cells ; Protons ; Simulation ; Spectrum analysis ; Stainless steel ; Stainless steels ; Sulfuric acid ; X ray photoelectron spectroscopy</subject><ispartof>Journal of solid state electrochemistry, 2023-08, Vol.27 (8), p.1993-2003</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-14765e49bc13762b0e7e8880cf2e822287a8ddb9ca0faf7dc716a9a6edd2eb583</citedby><cites>FETCH-LOGICAL-c319t-14765e49bc13762b0e7e8880cf2e822287a8ddb9ca0faf7dc716a9a6edd2eb583</cites><orcidid>0000-0001-8806-8656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-023-05469-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-023-05469-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tan, Zhiqiang</creatorcontrib><creatorcontrib>Xu, Ronghai</creatorcontrib><creatorcontrib>Bi, Hongyun</creatorcontrib><creatorcontrib>Zhang, Zhixia</creatorcontrib><creatorcontrib>Li, Moucheng</creatorcontrib><title>Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H 2 SO 4  + 0.1 ppm F − solution at 80 °C under different polarization potentials by using electrochemical measurement methods, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The 446 stainless steel passivates spontaneously in the simulated environment. The current density and interface contact resistance (ICR) enlarge slightly with increasing the anodic polarization potential in the passive region. As the potential changes from 0.7 to 1.5 V vs. SCE, the current density and ICR increase markedly due to the occurrence of transpassivation, secondary passivation, and oxygen evolution. The ICR values are larger by about 24 mΩ cm 2 after the polarization above 0.7 V vs. SCE. The polarization potential shifts from the passive region to oxygen evolution region, resulting in higher oxidized Fe and Mo contents in the product film on specimen surface and relatively more release of alloying constituents (especially Cr and Mo) into the solution. These are mainly responsible for the degradation of corrosion and surface conductivity properties.</description><subject>Analytical Chemistry</subject><subject>Anodic polarization</subject><subject>Cell cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Condensed Matter Physics</subject><subject>Contact resistance</subject><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Current density</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Energy Storage</subject><subject>Evolution</subject><subject>Fuel cells</subject><subject>Inductively coupled plasma</subject><subject>Measurement methods</subject><subject>Molybdenum</subject><subject>Optical emission spectroscopy</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Sulfuric acid</subject><subject>X ray photoelectron spectroscopy</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PAyEQ3RhN1Oof8ETieRXYLbBH0_iVmHjRM2HZwdLsQgXa2P_ij3W0Jt68DG_Ie28GXlVdMHrFKJXXGStVNeVNTeet6OrdQXXC2gZbKdThD-a1apU6rk5zXlHKpGD0pPq8dQ5sySQ6so4FQvFmJDEQG1OK2SPqYWm2PiZiwoDXoRhbSILsczHBwreybQXBzocRckYEMBIfSPbTZjQFBrJOsaAVfNilCW9AJpj6ZAIQt0GqhRGLKcs4AIGw9SmGCVc5q46cGTOc_56z6vXu9mXxUD893z8ubp5q27Cu1KyVYg5t11vWSMF7ChKUUtQ6DopzrqRRw9B31lBnnBysZMJ0RsAwcOjnqplVl3tfXPN9A7noVdykgCM1V43oBJ0Liiy-Z1n8mJzA6XXyk0k7zaj-TkHvU9CYgv5JQe9Q1OxFGcn48vRn_Y_qC72wjxI</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Tan, Zhiqiang</creator><creator>Xu, Ronghai</creator><creator>Bi, Hongyun</creator><creator>Zhang, Zhixia</creator><creator>Li, Moucheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8806-8656</orcidid></search><sort><creationdate>20230801</creationdate><title>Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment</title><author>Tan, Zhiqiang ; Xu, Ronghai ; Bi, Hongyun ; Zhang, Zhixia ; Li, Moucheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-14765e49bc13762b0e7e8880cf2e822287a8ddb9ca0faf7dc716a9a6edd2eb583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Anodic polarization</topic><topic>Cell cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Condensed Matter Physics</topic><topic>Contact resistance</topic><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Current density</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Energy Storage</topic><topic>Evolution</topic><topic>Fuel cells</topic><topic>Inductively coupled plasma</topic><topic>Measurement methods</topic><topic>Molybdenum</topic><topic>Optical emission spectroscopy</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Sulfuric acid</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Zhiqiang</creatorcontrib><creatorcontrib>Xu, Ronghai</creatorcontrib><creatorcontrib>Bi, Hongyun</creatorcontrib><creatorcontrib>Zhang, Zhixia</creatorcontrib><creatorcontrib>Li, Moucheng</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Zhiqiang</au><au>Xu, Ronghai</au><au>Bi, Hongyun</au><au>Zhang, Zhixia</au><au>Li, Moucheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>27</volume><issue>8</issue><spage>1993</spage><epage>2003</epage><pages>1993-2003</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H 2 SO 4  + 0.1 ppm F − solution at 80 °C under different polarization potentials by using electrochemical measurement methods, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The 446 stainless steel passivates spontaneously in the simulated environment. The current density and interface contact resistance (ICR) enlarge slightly with increasing the anodic polarization potential in the passive region. As the potential changes from 0.7 to 1.5 V vs. SCE, the current density and ICR increase markedly due to the occurrence of transpassivation, secondary passivation, and oxygen evolution. The ICR values are larger by about 24 mΩ cm 2 after the polarization above 0.7 V vs. SCE. The polarization potential shifts from the passive region to oxygen evolution region, resulting in higher oxidized Fe and Mo contents in the product film on specimen surface and relatively more release of alloying constituents (especially Cr and Mo) into the solution. These are mainly responsible for the degradation of corrosion and surface conductivity properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-023-05469-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8806-8656</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2023-08, Vol.27 (8), p.1993-2003
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_2836960560
source SpringerLink Journals
subjects Analytical Chemistry
Anodic polarization
Cell cathodes
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chromium
Condensed Matter Physics
Contact resistance
Corrosion
Corrosion effects
Corrosion potential
Corrosion resistance
Current density
Electrochemistry
Electrode polarization
Energy Storage
Evolution
Fuel cells
Inductively coupled plasma
Measurement methods
Molybdenum
Optical emission spectroscopy
Original Paper
Oxygen
Photoelectrons
Physical Chemistry
Proton exchange membrane fuel cells
Protons
Simulation
Spectrum analysis
Stainless steel
Stainless steels
Sulfuric acid
X ray photoelectron spectroscopy
title Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20potential%20on%20corrosion%20behavior%20and%20contact%20resistance%20of%20446%20stainless%20steel%20in%20simulated%20proton%20exchange%20membrane%20fuel%20cell%20cathode%20environment&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Tan,%20Zhiqiang&rft.date=2023-08-01&rft.volume=27&rft.issue=8&rft.spage=1993&rft.epage=2003&rft.pages=1993-2003&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-023-05469-y&rft_dat=%3Cproquest_cross%3E2836960560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836960560&rft_id=info:pmid/&rfr_iscdi=true