Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment
The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H 2 SO 4 + 0.1 ppm F − solution at 80 °C under different polarization potentials by using electrochemical measuremen...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2023-08, Vol.27 (8), p.1993-2003 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2003 |
---|---|
container_issue | 8 |
container_start_page | 1993 |
container_title | Journal of solid state electrochemistry |
container_volume | 27 |
creator | Tan, Zhiqiang Xu, Ronghai Bi, Hongyun Zhang, Zhixia Li, Moucheng |
description | The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H
2
SO
4
+ 0.1 ppm F
−
solution at 80 °C under different polarization potentials by using electrochemical measurement methods, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The 446 stainless steel passivates spontaneously in the simulated environment. The current density and interface contact resistance (ICR) enlarge slightly with increasing the anodic polarization potential in the passive region. As the potential changes from 0.7 to 1.5 V vs. SCE, the current density and ICR increase markedly due to the occurrence of transpassivation, secondary passivation, and oxygen evolution. The ICR values are larger by about 24 mΩ cm
2
after the polarization above 0.7 V vs. SCE. The polarization potential shifts from the passive region to oxygen evolution region, resulting in higher oxidized Fe and Mo contents in the product film on specimen surface and relatively more release of alloying constituents (especially Cr and Mo) into the solution. These are mainly responsible for the degradation of corrosion and surface conductivity properties. |
doi_str_mv | 10.1007/s10008-023-05469-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836960560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836960560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-14765e49bc13762b0e7e8880cf2e822287a8ddb9ca0faf7dc716a9a6edd2eb583</originalsourceid><addsrcrecordid>eNp9UU1PAyEQ3RhN1Oof8ETieRXYLbBH0_iVmHjRM2HZwdLsQgXa2P_ij3W0Jt68DG_Ie28GXlVdMHrFKJXXGStVNeVNTeet6OrdQXXC2gZbKdThD-a1apU6rk5zXlHKpGD0pPq8dQ5sySQ6so4FQvFmJDEQG1OK2SPqYWm2PiZiwoDXoRhbSILsczHBwreybQXBzocRckYEMBIfSPbTZjQFBrJOsaAVfNilCW9AJpj6ZAIQt0GqhRGLKcs4AIGw9SmGCVc5q46cGTOc_56z6vXu9mXxUD893z8ubp5q27Cu1KyVYg5t11vWSMF7ChKUUtQ6DopzrqRRw9B31lBnnBysZMJ0RsAwcOjnqplVl3tfXPN9A7noVdykgCM1V43oBJ0Liiy-Z1n8mJzA6XXyk0k7zaj-TkHvU9CYgv5JQe9Q1OxFGcn48vRn_Y_qC72wjxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836960560</pqid></control><display><type>article</type><title>Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment</title><source>SpringerLink Journals</source><creator>Tan, Zhiqiang ; Xu, Ronghai ; Bi, Hongyun ; Zhang, Zhixia ; Li, Moucheng</creator><creatorcontrib>Tan, Zhiqiang ; Xu, Ronghai ; Bi, Hongyun ; Zhang, Zhixia ; Li, Moucheng</creatorcontrib><description>The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H
2
SO
4
+ 0.1 ppm F
−
solution at 80 °C under different polarization potentials by using electrochemical measurement methods, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The 446 stainless steel passivates spontaneously in the simulated environment. The current density and interface contact resistance (ICR) enlarge slightly with increasing the anodic polarization potential in the passive region. As the potential changes from 0.7 to 1.5 V vs. SCE, the current density and ICR increase markedly due to the occurrence of transpassivation, secondary passivation, and oxygen evolution. The ICR values are larger by about 24 mΩ cm
2
after the polarization above 0.7 V vs. SCE. The polarization potential shifts from the passive region to oxygen evolution region, resulting in higher oxidized Fe and Mo contents in the product film on specimen surface and relatively more release of alloying constituents (especially Cr and Mo) into the solution. These are mainly responsible for the degradation of corrosion and surface conductivity properties.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-023-05469-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Anodic polarization ; Cell cathodes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromium ; Condensed Matter Physics ; Contact resistance ; Corrosion ; Corrosion effects ; Corrosion potential ; Corrosion resistance ; Current density ; Electrochemistry ; Electrode polarization ; Energy Storage ; Evolution ; Fuel cells ; Inductively coupled plasma ; Measurement methods ; Molybdenum ; Optical emission spectroscopy ; Original Paper ; Oxygen ; Photoelectrons ; Physical Chemistry ; Proton exchange membrane fuel cells ; Protons ; Simulation ; Spectrum analysis ; Stainless steel ; Stainless steels ; Sulfuric acid ; X ray photoelectron spectroscopy</subject><ispartof>Journal of solid state electrochemistry, 2023-08, Vol.27 (8), p.1993-2003</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-14765e49bc13762b0e7e8880cf2e822287a8ddb9ca0faf7dc716a9a6edd2eb583</citedby><cites>FETCH-LOGICAL-c319t-14765e49bc13762b0e7e8880cf2e822287a8ddb9ca0faf7dc716a9a6edd2eb583</cites><orcidid>0000-0001-8806-8656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-023-05469-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-023-05469-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tan, Zhiqiang</creatorcontrib><creatorcontrib>Xu, Ronghai</creatorcontrib><creatorcontrib>Bi, Hongyun</creatorcontrib><creatorcontrib>Zhang, Zhixia</creatorcontrib><creatorcontrib>Li, Moucheng</creatorcontrib><title>Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H
2
SO
4
+ 0.1 ppm F
−
solution at 80 °C under different polarization potentials by using electrochemical measurement methods, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The 446 stainless steel passivates spontaneously in the simulated environment. The current density and interface contact resistance (ICR) enlarge slightly with increasing the anodic polarization potential in the passive region. As the potential changes from 0.7 to 1.5 V vs. SCE, the current density and ICR increase markedly due to the occurrence of transpassivation, secondary passivation, and oxygen evolution. The ICR values are larger by about 24 mΩ cm
2
after the polarization above 0.7 V vs. SCE. The polarization potential shifts from the passive region to oxygen evolution region, resulting in higher oxidized Fe and Mo contents in the product film on specimen surface and relatively more release of alloying constituents (especially Cr and Mo) into the solution. These are mainly responsible for the degradation of corrosion and surface conductivity properties.</description><subject>Analytical Chemistry</subject><subject>Anodic polarization</subject><subject>Cell cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Condensed Matter Physics</subject><subject>Contact resistance</subject><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Current density</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Energy Storage</subject><subject>Evolution</subject><subject>Fuel cells</subject><subject>Inductively coupled plasma</subject><subject>Measurement methods</subject><subject>Molybdenum</subject><subject>Optical emission spectroscopy</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Sulfuric acid</subject><subject>X ray photoelectron spectroscopy</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PAyEQ3RhN1Oof8ETieRXYLbBH0_iVmHjRM2HZwdLsQgXa2P_ij3W0Jt68DG_Ie28GXlVdMHrFKJXXGStVNeVNTeet6OrdQXXC2gZbKdThD-a1apU6rk5zXlHKpGD0pPq8dQ5sySQ6so4FQvFmJDEQG1OK2SPqYWm2PiZiwoDXoRhbSILsczHBwreybQXBzocRckYEMBIfSPbTZjQFBrJOsaAVfNilCW9AJpj6ZAIQt0GqhRGLKcs4AIGw9SmGCVc5q46cGTOc_56z6vXu9mXxUD893z8ubp5q27Cu1KyVYg5t11vWSMF7ChKUUtQ6DopzrqRRw9B31lBnnBysZMJ0RsAwcOjnqplVl3tfXPN9A7noVdykgCM1V43oBJ0Liiy-Z1n8mJzA6XXyk0k7zaj-TkHvU9CYgv5JQe9Q1OxFGcn48vRn_Y_qC72wjxI</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Tan, Zhiqiang</creator><creator>Xu, Ronghai</creator><creator>Bi, Hongyun</creator><creator>Zhang, Zhixia</creator><creator>Li, Moucheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8806-8656</orcidid></search><sort><creationdate>20230801</creationdate><title>Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment</title><author>Tan, Zhiqiang ; Xu, Ronghai ; Bi, Hongyun ; Zhang, Zhixia ; Li, Moucheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-14765e49bc13762b0e7e8880cf2e822287a8ddb9ca0faf7dc716a9a6edd2eb583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Anodic polarization</topic><topic>Cell cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Condensed Matter Physics</topic><topic>Contact resistance</topic><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Current density</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Energy Storage</topic><topic>Evolution</topic><topic>Fuel cells</topic><topic>Inductively coupled plasma</topic><topic>Measurement methods</topic><topic>Molybdenum</topic><topic>Optical emission spectroscopy</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Sulfuric acid</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Zhiqiang</creatorcontrib><creatorcontrib>Xu, Ronghai</creatorcontrib><creatorcontrib>Bi, Hongyun</creatorcontrib><creatorcontrib>Zhang, Zhixia</creatorcontrib><creatorcontrib>Li, Moucheng</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Zhiqiang</au><au>Xu, Ronghai</au><au>Bi, Hongyun</au><au>Zhang, Zhixia</au><au>Li, Moucheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>27</volume><issue>8</issue><spage>1993</spage><epage>2003</epage><pages>1993-2003</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>The corrosion behavior and surface conductivity of type 446 stainless steel were investigated in the simulated cathode environment of proton exchange membrane fuel cell with 0.0005 M H
2
SO
4
+ 0.1 ppm F
−
solution at 80 °C under different polarization potentials by using electrochemical measurement methods, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The 446 stainless steel passivates spontaneously in the simulated environment. The current density and interface contact resistance (ICR) enlarge slightly with increasing the anodic polarization potential in the passive region. As the potential changes from 0.7 to 1.5 V vs. SCE, the current density and ICR increase markedly due to the occurrence of transpassivation, secondary passivation, and oxygen evolution. The ICR values are larger by about 24 mΩ cm
2
after the polarization above 0.7 V vs. SCE. The polarization potential shifts from the passive region to oxygen evolution region, resulting in higher oxidized Fe and Mo contents in the product film on specimen surface and relatively more release of alloying constituents (especially Cr and Mo) into the solution. These are mainly responsible for the degradation of corrosion and surface conductivity properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-023-05469-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8806-8656</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2023-08, Vol.27 (8), p.1993-2003 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_proquest_journals_2836960560 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Anodic polarization Cell cathodes Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Chromium Condensed Matter Physics Contact resistance Corrosion Corrosion effects Corrosion potential Corrosion resistance Current density Electrochemistry Electrode polarization Energy Storage Evolution Fuel cells Inductively coupled plasma Measurement methods Molybdenum Optical emission spectroscopy Original Paper Oxygen Photoelectrons Physical Chemistry Proton exchange membrane fuel cells Protons Simulation Spectrum analysis Stainless steel Stainless steels Sulfuric acid X ray photoelectron spectroscopy |
title | Effects of potential on corrosion behavior and contact resistance of 446 stainless steel in simulated proton exchange membrane fuel cell cathode environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20potential%20on%20corrosion%20behavior%20and%20contact%20resistance%20of%20446%20stainless%20steel%20in%20simulated%20proton%20exchange%20membrane%20fuel%20cell%20cathode%20environment&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Tan,%20Zhiqiang&rft.date=2023-08-01&rft.volume=27&rft.issue=8&rft.spage=1993&rft.epage=2003&rft.pages=1993-2003&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-023-05469-y&rft_dat=%3Cproquest_cross%3E2836960560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836960560&rft_id=info:pmid/&rfr_iscdi=true |