Several Jensen–Grüss Inequalities with Applications in Information Theory
Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completel...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2023-05, Vol.74 (12), p.1888-1908 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1908 |
---|---|
container_issue | 12 |
container_start_page | 1888 |
container_title | Ukrainian mathematical journal |
container_volume | 74 |
creator | Butt, S. I. Pečarić, Ð. Pečarić, J. |
description | Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completely monotone functions are established. Finally, as an application, we present the refinements for Shannon’s entropy. |
doi_str_mv | 10.1007/s11253-023-02176-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2836954289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758662069</galeid><sourcerecordid>A758662069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-196d0d64e248b4ebed8d67d22f10c5faea04c5fa11bd40bf06db7b68d9165b4c3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwqce5I0jRpjtMEY2gSB8Y5Sht3y9S1W9KBduMdeB1uvAlPQroicUOWZdn6P9v6EbomeEQwFreeEJomMaZdEsFjeYIGJBVJLBPBT9EAY0biVMr0HF14v8Y4YJkYoPkzvILTVfQItYf6-_1j6r4-vY9mNez2urKtBR-92XYVjbfbyha6tU3tI1sHRdm4zbGPFito3OESnZW68nD1W4fo5f5uMXmI50_T2WQ8j4sEyzYmkhtsOAPKspxBDiYzXBhKS4KLtNSgMesqIblhOC8xN7nIeWYk4WnOimSIbvq9W9fs9uBbtW72rg4nFc0SLlNGMxlUo1611BUoG75tnS5CGNjYoqmhtGE-FmnGOcW8A2gPFK7x3kGpts5utDsoglVns-ptVsFmdbRZdVDSQz6I6yW4v1_-oX4AGj6CQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836954289</pqid></control><display><type>article</type><title>Several Jensen–Grüss Inequalities with Applications in Information Theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Butt, S. I. ; Pečarić, Ð. ; Pečarić, J.</creator><creatorcontrib>Butt, S. I. ; Pečarić, Ð. ; Pečarić, J.</creatorcontrib><description>Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completely monotone functions are established. Finally, as an application, we present the refinements for Shannon’s entropy.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-023-02176-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Chebyshev approximation ; Entropy (Information theory) ; Geometry ; Inequalities ; Information theory ; Mathematics ; Mathematics and Statistics ; Monotone functions ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2023-05, Vol.74 (12), p.1888-1908</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-196d0d64e248b4ebed8d67d22f10c5faea04c5fa11bd40bf06db7b68d9165b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-023-02176-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-023-02176-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Butt, S. I.</creatorcontrib><creatorcontrib>Pečarić, Ð.</creatorcontrib><creatorcontrib>Pečarić, J.</creatorcontrib><title>Several Jensen–Grüss Inequalities with Applications in Information Theory</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completely monotone functions are established. Finally, as an application, we present the refinements for Shannon’s entropy.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Chebyshev approximation</subject><subject>Entropy (Information theory)</subject><subject>Geometry</subject><subject>Inequalities</subject><subject>Information theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monotone functions</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApwqce5I0jRpjtMEY2gSB8Y5Sht3y9S1W9KBduMdeB1uvAlPQroicUOWZdn6P9v6EbomeEQwFreeEJomMaZdEsFjeYIGJBVJLBPBT9EAY0biVMr0HF14v8Y4YJkYoPkzvILTVfQItYf6-_1j6r4-vY9mNez2urKtBR-92XYVjbfbyha6tU3tI1sHRdm4zbGPFito3OESnZW68nD1W4fo5f5uMXmI50_T2WQ8j4sEyzYmkhtsOAPKspxBDiYzXBhKS4KLtNSgMesqIblhOC8xN7nIeWYk4WnOimSIbvq9W9fs9uBbtW72rg4nFc0SLlNGMxlUo1611BUoG75tnS5CGNjYoqmhtGE-FmnGOcW8A2gPFK7x3kGpts5utDsoglVns-ptVsFmdbRZdVDSQz6I6yW4v1_-oX4AGj6CQQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Butt, S. I.</creator><creator>Pečarić, Ð.</creator><creator>Pečarić, J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Several Jensen–Grüss Inequalities with Applications in Information Theory</title><author>Butt, S. I. ; Pečarić, Ð. ; Pečarić, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-196d0d64e248b4ebed8d67d22f10c5faea04c5fa11bd40bf06db7b68d9165b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Chebyshev approximation</topic><topic>Entropy (Information theory)</topic><topic>Geometry</topic><topic>Inequalities</topic><topic>Information theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monotone functions</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butt, S. I.</creatorcontrib><creatorcontrib>Pečarić, Ð.</creatorcontrib><creatorcontrib>Pečarić, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butt, S. I.</au><au>Pečarić, Ð.</au><au>Pečarić, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Several Jensen–Grüss Inequalities with Applications in Information Theory</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>74</volume><issue>12</issue><spage>1888</spage><epage>1908</epage><pages>1888-1908</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completely monotone functions are established. Finally, as an application, we present the refinements for Shannon’s entropy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-023-02176-9</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2023-05, Vol.74 (12), p.1888-1908 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_proquest_journals_2836954289 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Applications of Mathematics Chebyshev approximation Entropy (Information theory) Geometry Inequalities Information theory Mathematics Mathematics and Statistics Monotone functions Statistics |
title | Several Jensen–Grüss Inequalities with Applications in Information Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Several%20Jensen%E2%80%93Gr%C3%BCss%20Inequalities%20with%20Applications%20in%20Information%20Theory&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Butt,%20S.%20I.&rft.date=2023-05-01&rft.volume=74&rft.issue=12&rft.spage=1888&rft.epage=1908&rft.pages=1888-1908&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-023-02176-9&rft_dat=%3Cgale_proqu%3EA758662069%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836954289&rft_id=info:pmid/&rft_galeid=A758662069&rfr_iscdi=true |