Several Jensen–Grüss Inequalities with Applications in Information Theory

Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2023-05, Vol.74 (12), p.1888-1908
Hauptverfasser: Butt, S. I., Pečarić, Ð., Pečarić, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1908
container_issue 12
container_start_page 1888
container_title Ukrainian mathematical journal
container_volume 74
creator Butt, S. I.
Pečarić, Ð.
Pečarić, J.
description Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completely monotone functions are established. Finally, as an application, we present the refinements for Shannon’s entropy.
doi_str_mv 10.1007/s11253-023-02176-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2836954289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758662069</galeid><sourcerecordid>A758662069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-196d0d64e248b4ebed8d67d22f10c5faea04c5fa11bd40bf06db7b68d9165b4c3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwqce5I0jRpjtMEY2gSB8Y5Sht3y9S1W9KBduMdeB1uvAlPQroicUOWZdn6P9v6EbomeEQwFreeEJomMaZdEsFjeYIGJBVJLBPBT9EAY0biVMr0HF14v8Y4YJkYoPkzvILTVfQItYf6-_1j6r4-vY9mNez2urKtBR-92XYVjbfbyha6tU3tI1sHRdm4zbGPFito3OESnZW68nD1W4fo5f5uMXmI50_T2WQ8j4sEyzYmkhtsOAPKspxBDiYzXBhKS4KLtNSgMesqIblhOC8xN7nIeWYk4WnOimSIbvq9W9fs9uBbtW72rg4nFc0SLlNGMxlUo1611BUoG75tnS5CGNjYoqmhtGE-FmnGOcW8A2gPFK7x3kGpts5utDsoglVns-ptVsFmdbRZdVDSQz6I6yW4v1_-oX4AGj6CQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836954289</pqid></control><display><type>article</type><title>Several Jensen–Grüss Inequalities with Applications in Information Theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Butt, S. I. ; Pečarić, Ð. ; Pečarić, J.</creator><creatorcontrib>Butt, S. I. ; Pečarić, Ð. ; Pečarić, J.</creatorcontrib><description>Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completely monotone functions are established. Finally, as an application, we present the refinements for Shannon’s entropy.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-023-02176-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Chebyshev approximation ; Entropy (Information theory) ; Geometry ; Inequalities ; Information theory ; Mathematics ; Mathematics and Statistics ; Monotone functions ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2023-05, Vol.74 (12), p.1888-1908</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-196d0d64e248b4ebed8d67d22f10c5faea04c5fa11bd40bf06db7b68d9165b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-023-02176-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-023-02176-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Butt, S. I.</creatorcontrib><creatorcontrib>Pečarić, Ð.</creatorcontrib><creatorcontrib>Pečarić, J.</creatorcontrib><title>Several Jensen–Grüss Inequalities with Applications in Information Theory</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completely monotone functions are established. Finally, as an application, we present the refinements for Shannon’s entropy.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Chebyshev approximation</subject><subject>Entropy (Information theory)</subject><subject>Geometry</subject><subject>Inequalities</subject><subject>Information theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monotone functions</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApwqce5I0jRpjtMEY2gSB8Y5Sht3y9S1W9KBduMdeB1uvAlPQroicUOWZdn6P9v6EbomeEQwFreeEJomMaZdEsFjeYIGJBVJLBPBT9EAY0biVMr0HF14v8Y4YJkYoPkzvILTVfQItYf6-_1j6r4-vY9mNez2urKtBR-92XYVjbfbyha6tU3tI1sHRdm4zbGPFito3OESnZW68nD1W4fo5f5uMXmI50_T2WQ8j4sEyzYmkhtsOAPKspxBDiYzXBhKS4KLtNSgMesqIblhOC8xN7nIeWYk4WnOimSIbvq9W9fs9uBbtW72rg4nFc0SLlNGMxlUo1611BUoG75tnS5CGNjYoqmhtGE-FmnGOcW8A2gPFK7x3kGpts5utDsoglVns-ptVsFmdbRZdVDSQz6I6yW4v1_-oX4AGj6CQQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Butt, S. I.</creator><creator>Pečarić, Ð.</creator><creator>Pečarić, J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Several Jensen–Grüss Inequalities with Applications in Information Theory</title><author>Butt, S. I. ; Pečarić, Ð. ; Pečarić, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-196d0d64e248b4ebed8d67d22f10c5faea04c5fa11bd40bf06db7b68d9165b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Chebyshev approximation</topic><topic>Entropy (Information theory)</topic><topic>Geometry</topic><topic>Inequalities</topic><topic>Information theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monotone functions</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butt, S. I.</creatorcontrib><creatorcontrib>Pečarić, Ð.</creatorcontrib><creatorcontrib>Pečarić, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butt, S. I.</au><au>Pečarić, Ð.</au><au>Pečarić, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Several Jensen–Grüss Inequalities with Applications in Information Theory</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>74</volume><issue>12</issue><spage>1888</spage><epage>1908</epage><pages>1888-1908</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>Several integral Jensen–Grüss inequalities are proved together with their refinements. Some new bounds are obtained for the integral Jensen–Chebyshev inequality. The multidimensional integral versions are also presented. In addition, some integral Jensen–Grüss inequalities for monotone and completely monotone functions are established. Finally, as an application, we present the refinements for Shannon’s entropy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-023-02176-9</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2023-05, Vol.74 (12), p.1888-1908
issn 0041-5995
1573-9376
language eng
recordid cdi_proquest_journals_2836954289
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Chebyshev approximation
Entropy (Information theory)
Geometry
Inequalities
Information theory
Mathematics
Mathematics and Statistics
Monotone functions
Statistics
title Several Jensen–Grüss Inequalities with Applications in Information Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Several%20Jensen%E2%80%93Gr%C3%BCss%20Inequalities%20with%20Applications%20in%20Information%20Theory&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Butt,%20S.%20I.&rft.date=2023-05-01&rft.volume=74&rft.issue=12&rft.spage=1888&rft.epage=1908&rft.pages=1888-1908&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-023-02176-9&rft_dat=%3Cgale_proqu%3EA758662069%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836954289&rft_id=info:pmid/&rft_galeid=A758662069&rfr_iscdi=true