Counting double cosets with application to generic 3-manifolds
We study the growth of double cosets in the class of groups with contracting elements, including relatively hyperbolic groups, CAT(0) groups and mapping class groups among others. Generalizing a recent work of Gitik and Rips about hyperbolic groups, we prove that the double coset growth of two Morse...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Han, Suzhen Yang, Wenyuan Zou, Yanqing |
description | We study the growth of double cosets in the class of groups with contracting elements, including relatively hyperbolic groups, CAT(0) groups and mapping class groups among others. Generalizing a recent work of Gitik and Rips about hyperbolic groups, we prove that the double coset growth of two Morse subgroups of infinite index is comparable with the orbital growth function. The same result is further obtained for a more general class of subgroups whose limit sets are proper subsets in the entire limit set of the ambient group. As an application, we confirm a conjecture of Maher that hyperbolic 3-manifolds are exponentially generic in the set of 3-manifolds built from Heegaard splitting using complexity in Teichm\"{u}ller metric. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2836660901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836660901</sourcerecordid><originalsourceid>FETCH-proquest_journals_28366609013</originalsourceid><addsrcrecordid>eNqNyjEOgjAUgOHGxESi3OElziSlhYqLC9F4AHdSoWBJ7au8Nl5fBw_g9A_fv2KZkLIsmkqIDcuJZs65UAdR1zJjpxaTj9ZPMGC6OwM9kokEbxsfoENwttfRooeIMBlvFtuDLJ7a2xHdQDu2HrUjk_-6ZfvL-dZei7DgKxmK3Yxp8V_qRCOVUvzIS_nf9QHUXTh1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836660901</pqid></control><display><type>article</type><title>Counting double cosets with application to generic 3-manifolds</title><source>Free E- Journals</source><creator>Han, Suzhen ; Yang, Wenyuan ; Zou, Yanqing</creator><creatorcontrib>Han, Suzhen ; Yang, Wenyuan ; Zou, Yanqing</creatorcontrib><description>We study the growth of double cosets in the class of groups with contracting elements, including relatively hyperbolic groups, CAT(0) groups and mapping class groups among others. Generalizing a recent work of Gitik and Rips about hyperbolic groups, we prove that the double coset growth of two Morse subgroups of infinite index is comparable with the orbital growth function. The same result is further obtained for a more general class of subgroups whose limit sets are proper subsets in the entire limit set of the ambient group. As an application, we confirm a conjecture of Maher that hyperbolic 3-manifolds are exponentially generic in the set of 3-manifolds built from Heegaard splitting using complexity in Teichm\"{u}ller metric.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds ; Subgroups</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Han, Suzhen</creatorcontrib><creatorcontrib>Yang, Wenyuan</creatorcontrib><creatorcontrib>Zou, Yanqing</creatorcontrib><title>Counting double cosets with application to generic 3-manifolds</title><title>arXiv.org</title><description>We study the growth of double cosets in the class of groups with contracting elements, including relatively hyperbolic groups, CAT(0) groups and mapping class groups among others. Generalizing a recent work of Gitik and Rips about hyperbolic groups, we prove that the double coset growth of two Morse subgroups of infinite index is comparable with the orbital growth function. The same result is further obtained for a more general class of subgroups whose limit sets are proper subsets in the entire limit set of the ambient group. As an application, we confirm a conjecture of Maher that hyperbolic 3-manifolds are exponentially generic in the set of 3-manifolds built from Heegaard splitting using complexity in Teichm\"{u}ller metric.</description><subject>Manifolds</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyjEOgjAUgOHGxESi3OElziSlhYqLC9F4AHdSoWBJ7au8Nl5fBw_g9A_fv2KZkLIsmkqIDcuJZs65UAdR1zJjpxaTj9ZPMGC6OwM9kokEbxsfoENwttfRooeIMBlvFtuDLJ7a2xHdQDu2HrUjk_-6ZfvL-dZei7DgKxmK3Yxp8V_qRCOVUvzIS_nf9QHUXTh1</recordid><startdate>20231230</startdate><enddate>20231230</enddate><creator>Han, Suzhen</creator><creator>Yang, Wenyuan</creator><creator>Zou, Yanqing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231230</creationdate><title>Counting double cosets with application to generic 3-manifolds</title><author>Han, Suzhen ; Yang, Wenyuan ; Zou, Yanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28366609013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Manifolds</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Suzhen</creatorcontrib><creatorcontrib>Yang, Wenyuan</creatorcontrib><creatorcontrib>Zou, Yanqing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Suzhen</au><au>Yang, Wenyuan</au><au>Zou, Yanqing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Counting double cosets with application to generic 3-manifolds</atitle><jtitle>arXiv.org</jtitle><date>2023-12-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study the growth of double cosets in the class of groups with contracting elements, including relatively hyperbolic groups, CAT(0) groups and mapping class groups among others. Generalizing a recent work of Gitik and Rips about hyperbolic groups, we prove that the double coset growth of two Morse subgroups of infinite index is comparable with the orbital growth function. The same result is further obtained for a more general class of subgroups whose limit sets are proper subsets in the entire limit set of the ambient group. As an application, we confirm a conjecture of Maher that hyperbolic 3-manifolds are exponentially generic in the set of 3-manifolds built from Heegaard splitting using complexity in Teichm\"{u}ller metric.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2836660901 |
source | Free E- Journals |
subjects | Manifolds Subgroups |
title | Counting double cosets with application to generic 3-manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Counting%20double%20cosets%20with%20application%20to%20generic%203-manifolds&rft.jtitle=arXiv.org&rft.au=Han,%20Suzhen&rft.date=2023-12-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2836660901%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836660901&rft_id=info:pmid/&rfr_iscdi=true |