A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate
Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adju...
Gespeichert in:
Veröffentlicht in: | GPS solutions 2023-10, Vol.27 (4), p.170, Article 170 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 170 |
container_title | GPS solutions |
container_volume | 27 |
creator | Huang, Liangke Liu, Wen Mo, Zhixiang Zhang, Hongxing Li, Junyu Chen, Fade Liu, Lilong Jiang, Weiping |
description | Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adjustment model (GPWV-H) by considering the time-varying lapse rate using the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) from 2012 to 2017. The performance of the GPWV-H model in vertical adjustment is evaluated using multi-source PWV data and compared with the conventional empirical model (EPWV-H). The numerical results are as follows: (1) The bias and root mean square (RMS) of the GPWV-H model are − 0.10/ − 0.35 mm and 1.43/1.07 mm, respectively, when ERA5 and radiosonde PWV profiles were used as reference which are 9.3 and 5.9% (in RMS) lower than EPWV-H model; (2) The GPWV-H model improved by 15.1–17.1 and 0.8–1.6% compared to the non-adjustment and the EPWV-H model, respectively, when interpolating Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) with various grid resolutions to radiosonde stations. These results indicate that the GPWV-H model outperforms the EPWV-H model regarding global PWV interpolation accuracy and stability and has a promising application tendency in global real-time and high-precision water vapor monitoring. |
doi_str_mv | 10.1007/s10291-023-01506-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836659331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836659331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d574ebd810e57ae45ce84cea8a53a8193345d7790ff8f99dcb3b7a8caf7b5b5c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwB5gsMRvsOI7tsar4kpBYYLYc59K6SuPUdlvx73EJEhvT3fC8752eoril5J4SIh4iJaWimJQME8pJjflZMaO8pJhKWZ_nnUiCORPksriKcUNISZSqZsVugQY4oq1voUedD-gAITlremTazT6mLQwJ-Q6NAawbXTJND-hoEmTSjJk_urRG1g_RtRBMcn444WkNKLkt4IMJX25Yod6MEVAG4Lq46Ewf4eZ3zovPp8eP5Qt-e39-XS7esGVUJdxyUUHTSkqACwMVtyArC0YazoykirGKt0Io0nWyU6q1DWuEkdZ0ouENt2xe3E29Y_C7PcSkN34fhnxSl5LVNc8VNFPlRNngYwzQ6TG4bX5aU6JPavWkVme1-ket5jnEplDM8LCC8Ff9T-obLgJ-bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836659331</pqid></control><display><type>article</type><title>A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate</title><source>SpringerLink Journals</source><creator>Huang, Liangke ; Liu, Wen ; Mo, Zhixiang ; Zhang, Hongxing ; Li, Junyu ; Chen, Fade ; Liu, Lilong ; Jiang, Weiping</creator><creatorcontrib>Huang, Liangke ; Liu, Wen ; Mo, Zhixiang ; Zhang, Hongxing ; Li, Junyu ; Chen, Fade ; Liu, Lilong ; Jiang, Weiping</creatorcontrib><description>Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adjustment model (GPWV-H) by considering the time-varying lapse rate using the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) from 2012 to 2017. The performance of the GPWV-H model in vertical adjustment is evaluated using multi-source PWV data and compared with the conventional empirical model (EPWV-H). The numerical results are as follows: (1) The bias and root mean square (RMS) of the GPWV-H model are − 0.10/ − 0.35 mm and 1.43/1.07 mm, respectively, when ERA5 and radiosonde PWV profiles were used as reference which are 9.3 and 5.9% (in RMS) lower than EPWV-H model; (2) The GPWV-H model improved by 15.1–17.1 and 0.8–1.6% compared to the non-adjustment and the EPWV-H model, respectively, when interpolating Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) with various grid resolutions to radiosonde stations. These results indicate that the GPWV-H model outperforms the EPWV-H model regarding global PWV interpolation accuracy and stability and has a promising application tendency in global real-time and high-precision water vapor monitoring.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-023-01506-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Altitude ; Atmospheric models ; Atmospheric Sciences ; Automotive Engineering ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Empirical analysis ; Geophysics/Geodesy ; Humidity ; Interpolation ; Lapse rate ; Mathematical models ; Numerical prediction ; Numerical weather forecasting ; Original Article ; Performance evaluation ; Radiosondes ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Water vapor ; Weather forecasting</subject><ispartof>GPS solutions, 2023-10, Vol.27 (4), p.170, Article 170</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d574ebd810e57ae45ce84cea8a53a8193345d7790ff8f99dcb3b7a8caf7b5b5c3</citedby><cites>FETCH-LOGICAL-c319t-d574ebd810e57ae45ce84cea8a53a8193345d7790ff8f99dcb3b7a8caf7b5b5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-023-01506-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-023-01506-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huang, Liangke</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Mo, Zhixiang</creatorcontrib><creatorcontrib>Zhang, Hongxing</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Chen, Fade</creatorcontrib><creatorcontrib>Liu, Lilong</creatorcontrib><creatorcontrib>Jiang, Weiping</creatorcontrib><title>A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adjustment model (GPWV-H) by considering the time-varying lapse rate using the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) from 2012 to 2017. The performance of the GPWV-H model in vertical adjustment is evaluated using multi-source PWV data and compared with the conventional empirical model (EPWV-H). The numerical results are as follows: (1) The bias and root mean square (RMS) of the GPWV-H model are − 0.10/ − 0.35 mm and 1.43/1.07 mm, respectively, when ERA5 and radiosonde PWV profiles were used as reference which are 9.3 and 5.9% (in RMS) lower than EPWV-H model; (2) The GPWV-H model improved by 15.1–17.1 and 0.8–1.6% compared to the non-adjustment and the EPWV-H model, respectively, when interpolating Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) with various grid resolutions to radiosonde stations. These results indicate that the GPWV-H model outperforms the EPWV-H model regarding global PWV interpolation accuracy and stability and has a promising application tendency in global real-time and high-precision water vapor monitoring.</description><subject>Accuracy</subject><subject>Altitude</subject><subject>Atmospheric models</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Empirical analysis</subject><subject>Geophysics/Geodesy</subject><subject>Humidity</subject><subject>Interpolation</subject><subject>Lapse rate</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Radiosondes</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Water vapor</subject><subject>Weather forecasting</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhiMEEqXwB5gsMRvsOI7tsar4kpBYYLYc59K6SuPUdlvx73EJEhvT3fC8752eoril5J4SIh4iJaWimJQME8pJjflZMaO8pJhKWZ_nnUiCORPksriKcUNISZSqZsVugQY4oq1voUedD-gAITlremTazT6mLQwJ-Q6NAawbXTJND-hoEmTSjJk_urRG1g_RtRBMcn444WkNKLkt4IMJX25Yod6MEVAG4Lq46Ewf4eZ3zovPp8eP5Qt-e39-XS7esGVUJdxyUUHTSkqACwMVtyArC0YazoykirGKt0Io0nWyU6q1DWuEkdZ0ouENt2xe3E29Y_C7PcSkN34fhnxSl5LVNc8VNFPlRNngYwzQ6TG4bX5aU6JPavWkVme1-ket5jnEplDM8LCC8Ff9T-obLgJ-bw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Huang, Liangke</creator><creator>Liu, Wen</creator><creator>Mo, Zhixiang</creator><creator>Zhang, Hongxing</creator><creator>Li, Junyu</creator><creator>Chen, Fade</creator><creator>Liu, Lilong</creator><creator>Jiang, Weiping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate</title><author>Huang, Liangke ; Liu, Wen ; Mo, Zhixiang ; Zhang, Hongxing ; Li, Junyu ; Chen, Fade ; Liu, Lilong ; Jiang, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d574ebd810e57ae45ce84cea8a53a8193345d7790ff8f99dcb3b7a8caf7b5b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Altitude</topic><topic>Atmospheric models</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Empirical analysis</topic><topic>Geophysics/Geodesy</topic><topic>Humidity</topic><topic>Interpolation</topic><topic>Lapse rate</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Radiosondes</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Water vapor</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Liangke</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Mo, Zhixiang</creatorcontrib><creatorcontrib>Zhang, Hongxing</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Chen, Fade</creatorcontrib><creatorcontrib>Liu, Lilong</creatorcontrib><creatorcontrib>Jiang, Weiping</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Liangke</au><au>Liu, Wen</au><au>Mo, Zhixiang</au><au>Zhang, Hongxing</au><au>Li, Junyu</au><au>Chen, Fade</au><au>Liu, Lilong</au><au>Jiang, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>170</spage><pages>170-</pages><artnum>170</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adjustment model (GPWV-H) by considering the time-varying lapse rate using the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) from 2012 to 2017. The performance of the GPWV-H model in vertical adjustment is evaluated using multi-source PWV data and compared with the conventional empirical model (EPWV-H). The numerical results are as follows: (1) The bias and root mean square (RMS) of the GPWV-H model are − 0.10/ − 0.35 mm and 1.43/1.07 mm, respectively, when ERA5 and radiosonde PWV profiles were used as reference which are 9.3 and 5.9% (in RMS) lower than EPWV-H model; (2) The GPWV-H model improved by 15.1–17.1 and 0.8–1.6% compared to the non-adjustment and the EPWV-H model, respectively, when interpolating Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) with various grid resolutions to radiosonde stations. These results indicate that the GPWV-H model outperforms the EPWV-H model regarding global PWV interpolation accuracy and stability and has a promising application tendency in global real-time and high-precision water vapor monitoring.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-023-01506-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1080-5370 |
ispartof | GPS solutions, 2023-10, Vol.27 (4), p.170, Article 170 |
issn | 1080-5370 1521-1886 |
language | eng |
recordid | cdi_proquest_journals_2836659331 |
source | SpringerLink Journals |
subjects | Accuracy Altitude Atmospheric models Atmospheric Sciences Automotive Engineering Earth and Environmental Science Earth Sciences Electrical Engineering Empirical analysis Geophysics/Geodesy Humidity Interpolation Lapse rate Mathematical models Numerical prediction Numerical weather forecasting Original Article Performance evaluation Radiosondes Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Water vapor Weather forecasting |
title | A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20model%20for%20vertical%20adjustment%20of%20precipitable%20water%20vapor%20with%20consideration%20of%20the%20time-varying%20lapse%20rate&rft.jtitle=GPS%20solutions&rft.au=Huang,%20Liangke&rft.date=2023-10-01&rft.volume=27&rft.issue=4&rft.spage=170&rft.pages=170-&rft.artnum=170&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-023-01506-5&rft_dat=%3Cproquest_cross%3E2836659331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836659331&rft_id=info:pmid/&rfr_iscdi=true |