A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate

Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adju...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2023-10, Vol.27 (4), p.170, Article 170
Hauptverfasser: Huang, Liangke, Liu, Wen, Mo, Zhixiang, Zhang, Hongxing, Li, Junyu, Chen, Fade, Liu, Lilong, Jiang, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 170
container_title GPS solutions
container_volume 27
creator Huang, Liangke
Liu, Wen
Mo, Zhixiang
Zhang, Hongxing
Li, Junyu
Chen, Fade
Liu, Lilong
Jiang, Weiping
description Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adjustment model (GPWV-H) by considering the time-varying lapse rate using the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) from 2012 to 2017. The performance of the GPWV-H model in vertical adjustment is evaluated using multi-source PWV data and compared with the conventional empirical model (EPWV-H). The numerical results are as follows: (1) The bias and root mean square (RMS) of the GPWV-H model are − 0.10/ − 0.35 mm and 1.43/1.07 mm, respectively, when ERA5 and radiosonde PWV profiles were used as reference which are 9.3 and 5.9% (in RMS) lower than EPWV-H model; (2) The GPWV-H model improved by 15.1–17.1 and 0.8–1.6% compared to the non-adjustment and the EPWV-H model, respectively, when interpolating Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) with various grid resolutions to radiosonde stations. These results indicate that the GPWV-H model outperforms the EPWV-H model regarding global PWV interpolation accuracy and stability and has a promising application tendency in global real-time and high-precision water vapor monitoring.
doi_str_mv 10.1007/s10291-023-01506-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836659331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836659331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d574ebd810e57ae45ce84cea8a53a8193345d7790ff8f99dcb3b7a8caf7b5b5c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwB5gsMRvsOI7tsar4kpBYYLYc59K6SuPUdlvx73EJEhvT3fC8752eoril5J4SIh4iJaWimJQME8pJjflZMaO8pJhKWZ_nnUiCORPksriKcUNISZSqZsVugQY4oq1voUedD-gAITlremTazT6mLQwJ-Q6NAawbXTJND-hoEmTSjJk_urRG1g_RtRBMcn444WkNKLkt4IMJX25Yod6MEVAG4Lq46Ewf4eZ3zovPp8eP5Qt-e39-XS7esGVUJdxyUUHTSkqACwMVtyArC0YazoykirGKt0Io0nWyU6q1DWuEkdZ0ouENt2xe3E29Y_C7PcSkN34fhnxSl5LVNc8VNFPlRNngYwzQ6TG4bX5aU6JPavWkVme1-ket5jnEplDM8LCC8Ff9T-obLgJ-bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836659331</pqid></control><display><type>article</type><title>A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate</title><source>SpringerLink Journals</source><creator>Huang, Liangke ; Liu, Wen ; Mo, Zhixiang ; Zhang, Hongxing ; Li, Junyu ; Chen, Fade ; Liu, Lilong ; Jiang, Weiping</creator><creatorcontrib>Huang, Liangke ; Liu, Wen ; Mo, Zhixiang ; Zhang, Hongxing ; Li, Junyu ; Chen, Fade ; Liu, Lilong ; Jiang, Weiping</creatorcontrib><description>Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adjustment model (GPWV-H) by considering the time-varying lapse rate using the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) from 2012 to 2017. The performance of the GPWV-H model in vertical adjustment is evaluated using multi-source PWV data and compared with the conventional empirical model (EPWV-H). The numerical results are as follows: (1) The bias and root mean square (RMS) of the GPWV-H model are − 0.10/ − 0.35 mm and 1.43/1.07 mm, respectively, when ERA5 and radiosonde PWV profiles were used as reference which are 9.3 and 5.9% (in RMS) lower than EPWV-H model; (2) The GPWV-H model improved by 15.1–17.1 and 0.8–1.6% compared to the non-adjustment and the EPWV-H model, respectively, when interpolating Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) with various grid resolutions to radiosonde stations. These results indicate that the GPWV-H model outperforms the EPWV-H model regarding global PWV interpolation accuracy and stability and has a promising application tendency in global real-time and high-precision water vapor monitoring.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-023-01506-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Altitude ; Atmospheric models ; Atmospheric Sciences ; Automotive Engineering ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Empirical analysis ; Geophysics/Geodesy ; Humidity ; Interpolation ; Lapse rate ; Mathematical models ; Numerical prediction ; Numerical weather forecasting ; Original Article ; Performance evaluation ; Radiosondes ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Water vapor ; Weather forecasting</subject><ispartof>GPS solutions, 2023-10, Vol.27 (4), p.170, Article 170</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d574ebd810e57ae45ce84cea8a53a8193345d7790ff8f99dcb3b7a8caf7b5b5c3</citedby><cites>FETCH-LOGICAL-c319t-d574ebd810e57ae45ce84cea8a53a8193345d7790ff8f99dcb3b7a8caf7b5b5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-023-01506-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-023-01506-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huang, Liangke</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Mo, Zhixiang</creatorcontrib><creatorcontrib>Zhang, Hongxing</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Chen, Fade</creatorcontrib><creatorcontrib>Liu, Lilong</creatorcontrib><creatorcontrib>Jiang, Weiping</creatorcontrib><title>A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adjustment model (GPWV-H) by considering the time-varying lapse rate using the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) from 2012 to 2017. The performance of the GPWV-H model in vertical adjustment is evaluated using multi-source PWV data and compared with the conventional empirical model (EPWV-H). The numerical results are as follows: (1) The bias and root mean square (RMS) of the GPWV-H model are − 0.10/ − 0.35 mm and 1.43/1.07 mm, respectively, when ERA5 and radiosonde PWV profiles were used as reference which are 9.3 and 5.9% (in RMS) lower than EPWV-H model; (2) The GPWV-H model improved by 15.1–17.1 and 0.8–1.6% compared to the non-adjustment and the EPWV-H model, respectively, when interpolating Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) with various grid resolutions to radiosonde stations. These results indicate that the GPWV-H model outperforms the EPWV-H model regarding global PWV interpolation accuracy and stability and has a promising application tendency in global real-time and high-precision water vapor monitoring.</description><subject>Accuracy</subject><subject>Altitude</subject><subject>Atmospheric models</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Empirical analysis</subject><subject>Geophysics/Geodesy</subject><subject>Humidity</subject><subject>Interpolation</subject><subject>Lapse rate</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Radiosondes</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Water vapor</subject><subject>Weather forecasting</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhiMEEqXwB5gsMRvsOI7tsar4kpBYYLYc59K6SuPUdlvx73EJEhvT3fC8752eoril5J4SIh4iJaWimJQME8pJjflZMaO8pJhKWZ_nnUiCORPksriKcUNISZSqZsVugQY4oq1voUedD-gAITlremTazT6mLQwJ-Q6NAawbXTJND-hoEmTSjJk_urRG1g_RtRBMcn444WkNKLkt4IMJX25Yod6MEVAG4Lq46Ewf4eZ3zovPp8eP5Qt-e39-XS7esGVUJdxyUUHTSkqACwMVtyArC0YazoykirGKt0Io0nWyU6q1DWuEkdZ0ouENt2xe3E29Y_C7PcSkN34fhnxSl5LVNc8VNFPlRNngYwzQ6TG4bX5aU6JPavWkVme1-ket5jnEplDM8LCC8Ff9T-obLgJ-bw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Huang, Liangke</creator><creator>Liu, Wen</creator><creator>Mo, Zhixiang</creator><creator>Zhang, Hongxing</creator><creator>Li, Junyu</creator><creator>Chen, Fade</creator><creator>Liu, Lilong</creator><creator>Jiang, Weiping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate</title><author>Huang, Liangke ; Liu, Wen ; Mo, Zhixiang ; Zhang, Hongxing ; Li, Junyu ; Chen, Fade ; Liu, Lilong ; Jiang, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d574ebd810e57ae45ce84cea8a53a8193345d7790ff8f99dcb3b7a8caf7b5b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Altitude</topic><topic>Atmospheric models</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Empirical analysis</topic><topic>Geophysics/Geodesy</topic><topic>Humidity</topic><topic>Interpolation</topic><topic>Lapse rate</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Radiosondes</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Water vapor</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Liangke</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Mo, Zhixiang</creatorcontrib><creatorcontrib>Zhang, Hongxing</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Chen, Fade</creatorcontrib><creatorcontrib>Liu, Lilong</creatorcontrib><creatorcontrib>Jiang, Weiping</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Liangke</au><au>Liu, Wen</au><au>Mo, Zhixiang</au><au>Zhang, Hongxing</au><au>Li, Junyu</au><au>Chen, Fade</au><au>Liu, Lilong</au><au>Jiang, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>170</spage><pages>170-</pages><artnum>170</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>Precipitable water vapor (PWV) is an essential parameter in numerical weather prediction and climate research. Existing global empirical PWV models rely on a single coefficient for vertical adjustment and lack geographical differentiation. Therefore, this study developed the global PWV vertical adjustment model (GPWV-H) by considering the time-varying lapse rate using the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) from 2012 to 2017. The performance of the GPWV-H model in vertical adjustment is evaluated using multi-source PWV data and compared with the conventional empirical model (EPWV-H). The numerical results are as follows: (1) The bias and root mean square (RMS) of the GPWV-H model are − 0.10/ − 0.35 mm and 1.43/1.07 mm, respectively, when ERA5 and radiosonde PWV profiles were used as reference which are 9.3 and 5.9% (in RMS) lower than EPWV-H model; (2) The GPWV-H model improved by 15.1–17.1 and 0.8–1.6% compared to the non-adjustment and the EPWV-H model, respectively, when interpolating Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) with various grid resolutions to radiosonde stations. These results indicate that the GPWV-H model outperforms the EPWV-H model regarding global PWV interpolation accuracy and stability and has a promising application tendency in global real-time and high-precision water vapor monitoring.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-023-01506-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2023-10, Vol.27 (4), p.170, Article 170
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2836659331
source SpringerLink Journals
subjects Accuracy
Altitude
Atmospheric models
Atmospheric Sciences
Automotive Engineering
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Empirical analysis
Geophysics/Geodesy
Humidity
Interpolation
Lapse rate
Mathematical models
Numerical prediction
Numerical weather forecasting
Original Article
Performance evaluation
Radiosondes
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Water vapor
Weather forecasting
title A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20model%20for%20vertical%20adjustment%20of%20precipitable%20water%20vapor%20with%20consideration%20of%20the%20time-varying%20lapse%20rate&rft.jtitle=GPS%20solutions&rft.au=Huang,%20Liangke&rft.date=2023-10-01&rft.volume=27&rft.issue=4&rft.spage=170&rft.pages=170-&rft.artnum=170&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-023-01506-5&rft_dat=%3Cproquest_cross%3E2836659331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836659331&rft_id=info:pmid/&rfr_iscdi=true