Bounded generation of Steinberg groups over Dedekind rings of arithmetic type

The main result of the present paper is bounded elementary generation of the Steinberg groups \(\mathrm{St}(\Phi,R)\) for simply laced root systems \(\Phi\) of rank \(\ge 2\) and arbitrary Dedekind rings of arithmetic type. Also, we prove bounded generation of \(\mathrm{St}(\Phi,\mathbb F_{q}[t,\,t^...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Kunyavskii, Boris, Lavrenov, Andrei, Plotkin, Eugene, Vavilov, Nikolai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main result of the present paper is bounded elementary generation of the Steinberg groups \(\mathrm{St}(\Phi,R)\) for simply laced root systems \(\Phi\) of rank \(\ge 2\) and arbitrary Dedekind rings of arithmetic type. Also, we prove bounded generation of \(\mathrm{St}(\Phi,\mathbb F_{q}[t,\,t^{-1}])\) for all root systems \(\Phi\), and bounded generation of \(\mathrm{St}(\Phi,\mathbb F_{q}[t])\) for all root systems \(\Phi\neq\mathsf A_1\). The proofs are based on a theorem on bounded elementary generation for the corresponding Chevalley groups, where we provide uniform bounds.
ISSN:2331-8422