Bounded generation of Steinberg groups over Dedekind rings of arithmetic type
The main result of the present paper is bounded elementary generation of the Steinberg groups \(\mathrm{St}(\Phi,R)\) for simply laced root systems \(\Phi\) of rank \(\ge 2\) and arbitrary Dedekind rings of arithmetic type. Also, we prove bounded generation of \(\mathrm{St}(\Phi,\mathbb F_{q}[t,\,t^...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main result of the present paper is bounded elementary generation of the Steinberg groups \(\mathrm{St}(\Phi,R)\) for simply laced root systems \(\Phi\) of rank \(\ge 2\) and arbitrary Dedekind rings of arithmetic type. Also, we prove bounded generation of \(\mathrm{St}(\Phi,\mathbb F_{q}[t,\,t^{-1}])\) for all root systems \(\Phi\), and bounded generation of \(\mathrm{St}(\Phi,\mathbb F_{q}[t])\) for all root systems \(\Phi\neq\mathsf A_1\). The proofs are based on a theorem on bounded elementary generation for the corresponding Chevalley groups, where we provide uniform bounds. |
---|---|
ISSN: | 2331-8422 |