Freestanding graphene heat engine analyzed using stochastic thermodynamics
We present an Ito-Langevin model for freestanding graphene connected to an electrical circuit. The graphene is treated as a Brownian particle in a double-well potential and is adjacent to a fixed electrode to form a variable capacitor. The capacitor is connected in series with a battery and a load r...
Gespeichert in:
Veröffentlicht in: | AIP advances 2023-07, Vol.13 (7), p.075217-075217-7 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 075217-7 |
---|---|
container_issue | 7 |
container_start_page | 075217 |
container_title | AIP advances |
container_volume | 13 |
creator | Durbin, J. Mangum, J. M. Gikunda, M. N. Harerimana, F. Amin, T. Kumar, P. Bonilla, L. L. Thibado, P. M. |
description | We present an Ito-Langevin model for freestanding graphene connected to an electrical circuit. The graphene is treated as a Brownian particle in a double-well potential and is adjacent to a fixed electrode to form a variable capacitor. The capacitor is connected in series with a battery and a load resistor. The capacitor and resistor are given separate thermal reservoirs. We have solved the coupled Ito-Langevin equations for a broad range of temperature differences between the two reservoirs. Using ensemble averages, we report the rate of change in energy, heat, and work using stochastic thermodynamics. When the resistor is held at higher temperatures, the efficiency of the heat engine rises linearly with temperature. However, when the graphene is held at higher temperatures, the efficiency instantly rises and then plateaus. Also, twice as much entropy is produced when the resistor is hotter compared to when the graphene is hotter. Unexpectedly, the temperature of the capacitor is found to alter the dissipated power of the resistor. |
doi_str_mv | 10.1063/5.0147464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2836598301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af051c1267b64afc9634019e32ebae26</doaj_id><sourcerecordid>2836598301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a6a587a3c98574eee891556cff88925f63577167173cf83ff20364b21bdf5e653</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxYMoWGoPfoOAJ4XU_Z_NUYrVSsGLnpfJZjZJabN1Nz3UT29qRDw5l3kMP97MvCS5pmROieL3ck6oyIUSZ8mEUakzzpg6_6Mvk1mMGzKUKCjRYpK8LANi7KGr2q5O6wD7BjtMG4Q-xa5uBw0dbI-fWKWHeGJi720DsW9t2jcYdr46drBrbbxKLhxsI85--jR5Xz6-LZ6z9evTavGwziyXvM9AgdQ5cFtomQtE1AWVUlnntC6YdIrLPKcqpzm3TnPnGOFKlIyWlZOoJJ8mq9G38rAx-9DuIByNh9Z8D3yoDYThvC0acERSS5nKSyXA2UJxQWiBnGEJyNTgdTN67YP_OAxBmI0_hOHhaJjmShaaEzpQtyNlg48xoPvdSok5JW-k-Ul-YO9GNtq2h7713T_wF7rGgYM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836598301</pqid></control><display><type>article</type><title>Freestanding graphene heat engine analyzed using stochastic thermodynamics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Durbin, J. ; Mangum, J. M. ; Gikunda, M. N. ; Harerimana, F. ; Amin, T. ; Kumar, P. ; Bonilla, L. L. ; Thibado, P. M.</creator><creatorcontrib>Durbin, J. ; Mangum, J. M. ; Gikunda, M. N. ; Harerimana, F. ; Amin, T. ; Kumar, P. ; Bonilla, L. L. ; Thibado, P. M.</creatorcontrib><description>We present an Ito-Langevin model for freestanding graphene connected to an electrical circuit. The graphene is treated as a Brownian particle in a double-well potential and is adjacent to a fixed electrode to form a variable capacitor. The capacitor is connected in series with a battery and a load resistor. The capacitor and resistor are given separate thermal reservoirs. We have solved the coupled Ito-Langevin equations for a broad range of temperature differences between the two reservoirs. Using ensemble averages, we report the rate of change in energy, heat, and work using stochastic thermodynamics. When the resistor is held at higher temperatures, the efficiency of the heat engine rises linearly with temperature. However, when the graphene is held at higher temperatures, the efficiency instantly rises and then plateaus. Also, twice as much entropy is produced when the resistor is hotter compared to when the graphene is hotter. Unexpectedly, the temperature of the capacitor is found to alter the dissipated power of the resistor.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0147464</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Brownian motion ; Capacitors ; Circuits ; Graphene ; Heat engines ; Reservoirs ; Resistors ; Temperature ; Temperature gradients ; Thermodynamics</subject><ispartof>AIP advances, 2023-07, Vol.13 (7), p.075217-075217-7</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-a6a587a3c98574eee891556cff88925f63577167173cf83ff20364b21bdf5e653</cites><orcidid>0009-0008-8023-6086 ; 0000-0002-7687-8595 ; 0009-0004-6332-8625 ; 0000-0002-7417-9467 ; 0009-0005-2327-210X ; 0000-0003-1959-1130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,27931,27932</link.rule.ids></links><search><creatorcontrib>Durbin, J.</creatorcontrib><creatorcontrib>Mangum, J. M.</creatorcontrib><creatorcontrib>Gikunda, M. N.</creatorcontrib><creatorcontrib>Harerimana, F.</creatorcontrib><creatorcontrib>Amin, T.</creatorcontrib><creatorcontrib>Kumar, P.</creatorcontrib><creatorcontrib>Bonilla, L. L.</creatorcontrib><creatorcontrib>Thibado, P. M.</creatorcontrib><title>Freestanding graphene heat engine analyzed using stochastic thermodynamics</title><title>AIP advances</title><description>We present an Ito-Langevin model for freestanding graphene connected to an electrical circuit. The graphene is treated as a Brownian particle in a double-well potential and is adjacent to a fixed electrode to form a variable capacitor. The capacitor is connected in series with a battery and a load resistor. The capacitor and resistor are given separate thermal reservoirs. We have solved the coupled Ito-Langevin equations for a broad range of temperature differences between the two reservoirs. Using ensemble averages, we report the rate of change in energy, heat, and work using stochastic thermodynamics. When the resistor is held at higher temperatures, the efficiency of the heat engine rises linearly with temperature. However, when the graphene is held at higher temperatures, the efficiency instantly rises and then plateaus. Also, twice as much entropy is produced when the resistor is hotter compared to when the graphene is hotter. Unexpectedly, the temperature of the capacitor is found to alter the dissipated power of the resistor.</description><subject>Brownian motion</subject><subject>Capacitors</subject><subject>Circuits</subject><subject>Graphene</subject><subject>Heat engines</subject><subject>Reservoirs</subject><subject>Resistors</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermodynamics</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE9Lw0AQxYMoWGoPfoOAJ4XU_Z_NUYrVSsGLnpfJZjZJabN1Nz3UT29qRDw5l3kMP97MvCS5pmROieL3ck6oyIUSZ8mEUakzzpg6_6Mvk1mMGzKUKCjRYpK8LANi7KGr2q5O6wD7BjtMG4Q-xa5uBw0dbI-fWKWHeGJi720DsW9t2jcYdr46drBrbbxKLhxsI85--jR5Xz6-LZ6z9evTavGwziyXvM9AgdQ5cFtomQtE1AWVUlnntC6YdIrLPKcqpzm3TnPnGOFKlIyWlZOoJJ8mq9G38rAx-9DuIByNh9Z8D3yoDYThvC0acERSS5nKSyXA2UJxQWiBnGEJyNTgdTN67YP_OAxBmI0_hOHhaJjmShaaEzpQtyNlg48xoPvdSok5JW-k-Ul-YO9GNtq2h7713T_wF7rGgYM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Durbin, J.</creator><creator>Mangum, J. M.</creator><creator>Gikunda, M. N.</creator><creator>Harerimana, F.</creator><creator>Amin, T.</creator><creator>Kumar, P.</creator><creator>Bonilla, L. L.</creator><creator>Thibado, P. M.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-8023-6086</orcidid><orcidid>https://orcid.org/0000-0002-7687-8595</orcidid><orcidid>https://orcid.org/0009-0004-6332-8625</orcidid><orcidid>https://orcid.org/0000-0002-7417-9467</orcidid><orcidid>https://orcid.org/0009-0005-2327-210X</orcidid><orcidid>https://orcid.org/0000-0003-1959-1130</orcidid></search><sort><creationdate>20230701</creationdate><title>Freestanding graphene heat engine analyzed using stochastic thermodynamics</title><author>Durbin, J. ; Mangum, J. M. ; Gikunda, M. N. ; Harerimana, F. ; Amin, T. ; Kumar, P. ; Bonilla, L. L. ; Thibado, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a6a587a3c98574eee891556cff88925f63577167173cf83ff20364b21bdf5e653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brownian motion</topic><topic>Capacitors</topic><topic>Circuits</topic><topic>Graphene</topic><topic>Heat engines</topic><topic>Reservoirs</topic><topic>Resistors</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durbin, J.</creatorcontrib><creatorcontrib>Mangum, J. M.</creatorcontrib><creatorcontrib>Gikunda, M. N.</creatorcontrib><creatorcontrib>Harerimana, F.</creatorcontrib><creatorcontrib>Amin, T.</creatorcontrib><creatorcontrib>Kumar, P.</creatorcontrib><creatorcontrib>Bonilla, L. L.</creatorcontrib><creatorcontrib>Thibado, P. M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durbin, J.</au><au>Mangum, J. M.</au><au>Gikunda, M. N.</au><au>Harerimana, F.</au><au>Amin, T.</au><au>Kumar, P.</au><au>Bonilla, L. L.</au><au>Thibado, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freestanding graphene heat engine analyzed using stochastic thermodynamics</atitle><jtitle>AIP advances</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>13</volume><issue>7</issue><spage>075217</spage><epage>075217-7</epage><pages>075217-075217-7</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>We present an Ito-Langevin model for freestanding graphene connected to an electrical circuit. The graphene is treated as a Brownian particle in a double-well potential and is adjacent to a fixed electrode to form a variable capacitor. The capacitor is connected in series with a battery and a load resistor. The capacitor and resistor are given separate thermal reservoirs. We have solved the coupled Ito-Langevin equations for a broad range of temperature differences between the two reservoirs. Using ensemble averages, we report the rate of change in energy, heat, and work using stochastic thermodynamics. When the resistor is held at higher temperatures, the efficiency of the heat engine rises linearly with temperature. However, when the graphene is held at higher temperatures, the efficiency instantly rises and then plateaus. Also, twice as much entropy is produced when the resistor is hotter compared to when the graphene is hotter. Unexpectedly, the temperature of the capacitor is found to alter the dissipated power of the resistor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0147464</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0008-8023-6086</orcidid><orcidid>https://orcid.org/0000-0002-7687-8595</orcidid><orcidid>https://orcid.org/0009-0004-6332-8625</orcidid><orcidid>https://orcid.org/0000-0002-7417-9467</orcidid><orcidid>https://orcid.org/0009-0005-2327-210X</orcidid><orcidid>https://orcid.org/0000-0003-1959-1130</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2023-07, Vol.13 (7), p.075217-075217-7 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2836598301 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Brownian motion Capacitors Circuits Graphene Heat engines Reservoirs Resistors Temperature Temperature gradients Thermodynamics |
title | Freestanding graphene heat engine analyzed using stochastic thermodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freestanding%20graphene%20heat%20engine%20analyzed%20using%20stochastic%20thermodynamics&rft.jtitle=AIP%20advances&rft.au=Durbin,%20J.&rft.date=2023-07-01&rft.volume=13&rft.issue=7&rft.spage=075217&rft.epage=075217-7&rft.pages=075217-075217-7&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0147464&rft_dat=%3Cproquest_doaj_%3E2836598301%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836598301&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_af051c1267b64afc9634019e32ebae26&rfr_iscdi=true |