Polyorthogonalization in Pre-Hilbert Spaces
For a set of measure and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of li...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2023-04, Vol.44 (4), p.1506-1512 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1512 |
---|---|
container_issue | 4 |
container_start_page | 1506 |
container_title | Lobachevskii journal of mathematics |
container_volume | 44 |
creator | Starovoitov, A. P. Kechko, E. P. |
description | For a set of measure
and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of linearly independent systems
in the pre-Hilbert function spaces generated by the measures
. Our results generalize Schmidt’s theorem about orthogonalization. |
doi_str_mv | 10.1134/S1995080223040273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836406598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836406598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8fa610f520f93fcdbee6cb191ba8dcb72674be469ad0ce8359d6f40ffbb0fab23</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwNuCR4m-_NlscpSirVCwUD0vSTapW9ZNTbaH-ulNWcGDeHoD85vhMQhdE7gjhPH7NVGqBAmUMuBAK3aCJkQSiZUS9DTrbOOjf44uUtpCBoUQE3S7Ct0hxOE9bEKvu_ZLD23oi7YvVtHhRdsZF4divdPWpUt05nWX3NXPnaK3p8fX2QIvX-bPs4cltlTIAUuvBQFfUvCKedsY54Q1RBGjZWNNRUXFjeNC6Qask6xUjfAcvDcGvDaUTdHN2LuL4XPv0lBvwz7m71JNJRMcRKlkpshI2RhSis7Xu9h-6HioCdTHTeo_m-QMHTMps_3Gxd_m_0PfqK1jFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836406598</pqid></control><display><type>article</type><title>Polyorthogonalization in Pre-Hilbert Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Starovoitov, A. P. ; Kechko, E. P.</creator><creatorcontrib>Starovoitov, A. P. ; Kechko, E. P.</creatorcontrib><description>For a set of measure
and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of linearly independent systems
in the pre-Hilbert function spaces generated by the measures
. Our results generalize Schmidt’s theorem about orthogonalization.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223040273</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Determinants ; Function space ; Geometry ; Hilbert space ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2023-04, Vol.44 (4), p.1506-1512</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8fa610f520f93fcdbee6cb191ba8dcb72674be469ad0ce8359d6f40ffbb0fab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223040273$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223040273$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Starovoitov, A. P.</creatorcontrib><creatorcontrib>Kechko, E. P.</creatorcontrib><title>Polyorthogonalization in Pre-Hilbert Spaces</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>For a set of measure
and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of linearly independent systems
in the pre-Hilbert function spaces generated by the measures
. Our results generalize Schmidt’s theorem about orthogonalization.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Determinants</subject><subject>Function space</subject><subject>Geometry</subject><subject>Hilbert space</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwNuCR4m-_NlscpSirVCwUD0vSTapW9ZNTbaH-ulNWcGDeHoD85vhMQhdE7gjhPH7NVGqBAmUMuBAK3aCJkQSiZUS9DTrbOOjf44uUtpCBoUQE3S7Ct0hxOE9bEKvu_ZLD23oi7YvVtHhRdsZF4divdPWpUt05nWX3NXPnaK3p8fX2QIvX-bPs4cltlTIAUuvBQFfUvCKedsY54Q1RBGjZWNNRUXFjeNC6Qask6xUjfAcvDcGvDaUTdHN2LuL4XPv0lBvwz7m71JNJRMcRKlkpshI2RhSis7Xu9h-6HioCdTHTeo_m-QMHTMps_3Gxd_m_0PfqK1jFA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Starovoitov, A. P.</creator><creator>Kechko, E. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Polyorthogonalization in Pre-Hilbert Spaces</title><author>Starovoitov, A. P. ; Kechko, E. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8fa610f520f93fcdbee6cb191ba8dcb72674be469ad0ce8359d6f40ffbb0fab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Determinants</topic><topic>Function space</topic><topic>Geometry</topic><topic>Hilbert space</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starovoitov, A. P.</creatorcontrib><creatorcontrib>Kechko, E. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starovoitov, A. P.</au><au>Kechko, E. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyorthogonalization in Pre-Hilbert Spaces</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>44</volume><issue>4</issue><spage>1506</spage><epage>1512</epage><pages>1506-1512</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>For a set of measure
and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of linearly independent systems
in the pre-Hilbert function spaces generated by the measures
. Our results generalize Schmidt’s theorem about orthogonalization.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223040273</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2023-04, Vol.44 (4), p.1506-1512 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2836406598 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Analysis Determinants Function space Geometry Hilbert space Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
title | Polyorthogonalization in Pre-Hilbert Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyorthogonalization%20in%20Pre-Hilbert%20Spaces&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Starovoitov,%20A.%20P.&rft.date=2023-04-01&rft.volume=44&rft.issue=4&rft.spage=1506&rft.epage=1512&rft.pages=1506-1512&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223040273&rft_dat=%3Cproquest_cross%3E2836406598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836406598&rft_id=info:pmid/&rfr_iscdi=true |