Polyorthogonalization in Pre-Hilbert Spaces

For a set of measure and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023-04, Vol.44 (4), p.1506-1512
Hauptverfasser: Starovoitov, A. P., Kechko, E. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1512
container_issue 4
container_start_page 1506
container_title Lobachevskii journal of mathematics
container_volume 44
creator Starovoitov, A. P.
Kechko, E. P.
description For a set of measure and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of linearly independent systems in the pre-Hilbert function spaces generated by the measures . Our results generalize Schmidt’s theorem about orthogonalization.
doi_str_mv 10.1134/S1995080223040273
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836406598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836406598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8fa610f520f93fcdbee6cb191ba8dcb72674be469ad0ce8359d6f40ffbb0fab23</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwNuCR4m-_NlscpSirVCwUD0vSTapW9ZNTbaH-ulNWcGDeHoD85vhMQhdE7gjhPH7NVGqBAmUMuBAK3aCJkQSiZUS9DTrbOOjf44uUtpCBoUQE3S7Ct0hxOE9bEKvu_ZLD23oi7YvVtHhRdsZF4divdPWpUt05nWX3NXPnaK3p8fX2QIvX-bPs4cltlTIAUuvBQFfUvCKedsY54Q1RBGjZWNNRUXFjeNC6Qask6xUjfAcvDcGvDaUTdHN2LuL4XPv0lBvwz7m71JNJRMcRKlkpshI2RhSis7Xu9h-6HioCdTHTeo_m-QMHTMps_3Gxd_m_0PfqK1jFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836406598</pqid></control><display><type>article</type><title>Polyorthogonalization in Pre-Hilbert Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Starovoitov, A. P. ; Kechko, E. P.</creator><creatorcontrib>Starovoitov, A. P. ; Kechko, E. P.</creatorcontrib><description>For a set of measure and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of linearly independent systems in the pre-Hilbert function spaces generated by the measures . Our results generalize Schmidt’s theorem about orthogonalization.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223040273</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Determinants ; Function space ; Geometry ; Hilbert space ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2023-04, Vol.44 (4), p.1506-1512</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8fa610f520f93fcdbee6cb191ba8dcb72674be469ad0ce8359d6f40ffbb0fab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223040273$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223040273$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Starovoitov, A. P.</creatorcontrib><creatorcontrib>Kechko, E. P.</creatorcontrib><title>Polyorthogonalization in Pre-Hilbert Spaces</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>For a set of measure and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of linearly independent systems in the pre-Hilbert function spaces generated by the measures . Our results generalize Schmidt’s theorem about orthogonalization.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Determinants</subject><subject>Function space</subject><subject>Geometry</subject><subject>Hilbert space</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwNuCR4m-_NlscpSirVCwUD0vSTapW9ZNTbaH-ulNWcGDeHoD85vhMQhdE7gjhPH7NVGqBAmUMuBAK3aCJkQSiZUS9DTrbOOjf44uUtpCBoUQE3S7Ct0hxOE9bEKvu_ZLD23oi7YvVtHhRdsZF4divdPWpUt05nWX3NXPnaK3p8fX2QIvX-bPs4cltlTIAUuvBQFfUvCKedsY54Q1RBGjZWNNRUXFjeNC6Qask6xUjfAcvDcGvDaUTdHN2LuL4XPv0lBvwz7m71JNJRMcRKlkpshI2RhSis7Xu9h-6HioCdTHTeo_m-QMHTMps_3Gxd_m_0PfqK1jFA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Starovoitov, A. P.</creator><creator>Kechko, E. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Polyorthogonalization in Pre-Hilbert Spaces</title><author>Starovoitov, A. P. ; Kechko, E. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8fa610f520f93fcdbee6cb191ba8dcb72674be469ad0ce8359d6f40ffbb0fab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Determinants</topic><topic>Function space</topic><topic>Geometry</topic><topic>Hilbert space</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starovoitov, A. P.</creatorcontrib><creatorcontrib>Kechko, E. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starovoitov, A. P.</au><au>Kechko, E. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyorthogonalization in Pre-Hilbert Spaces</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>44</volume><issue>4</issue><spage>1506</spage><epage>1512</epage><pages>1506-1512</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>For a set of measure and the corresponding scalar products, we define multiple analogues of the Gram determinants and matrices. With their help, we found criteria of uniqueness and explicit form of polyorthogonal functions, obtained as a result of the described process of polyorthogonalization of linearly independent systems in the pre-Hilbert function spaces generated by the measures . Our results generalize Schmidt’s theorem about orthogonalization.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223040273</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023-04, Vol.44 (4), p.1506-1512
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2836406598
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Determinants
Function space
Geometry
Hilbert space
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Polyorthogonalization in Pre-Hilbert Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyorthogonalization%20in%20Pre-Hilbert%20Spaces&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Starovoitov,%20A.%20P.&rft.date=2023-04-01&rft.volume=44&rft.issue=4&rft.spage=1506&rft.epage=1512&rft.pages=1506-1512&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223040273&rft_dat=%3Cproquest_cross%3E2836406598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836406598&rft_id=info:pmid/&rfr_iscdi=true