Adaptable and conflict colouring multigraphs with no cycles of length three or four

The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2023-09, Vol.104 (1), p.188-219
Hauptverfasser: Aliaj, Jurgen, Molloy, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 188
container_title Journal of graph theory
container_volume 104
creator Aliaj, Jurgen
Molloy, Michael
description The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is no edge e=uv $e=uv$ where τ(e)=σ(u)=σ(v) $\tau (e)=\sigma (u)=\sigma (v)$. Here we show that for a multigraph G $G$ with maximum degree Δ ${\rm{\Delta }}$ and no cycles of length 3 or 4, cha(G)≤(22+o(1))Δ∕ln Δ ${\text{ch}}_{a}(G)\,\le (2\sqrt{2}+o(1))\sqrt{{\rm{\Delta }}\unicode{x02215}\mathrm{ln}\unicode{x0200A}{\rm{\Delta }}}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of G $G$, which is a closely related parameter recently defined by Dvořák, Esperet, Kang and Ozeki.
doi_str_mv 10.1002/jgt.22956
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836305409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836305409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-5aaeaa504b85ed4b5262e6a8b98f99559db853e253cebbd14633367c3b287f323</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1j-xax-rCgqoEgfK2bIdO03lJsFOVfXtMYQrp13NfrMjDQD3GM0wQmS-r4cZIZLxCzDBSC4KhLG4BBNEeVlIRMprcJPSHmWZITEBH8tK94M2wUHdVtB2rQ-NHfISumNs2hoejmFo6qj7XYKnZtjBtoP2bINLsPMwuLbO2rCLzsEuQp9dt-DK65Dc3d-cgs_np-3qpdi8r19Xy01hKSW8YFo7rRkqjWCuKg0jnDiuhZHCS8mYrPKBOsKodcZUuOSUUr6w1BCx8JTQKXgY__ax-zq6NKh9Tm9zpCKCcopYiWSmHkfKxi6l6LzqY3PQ8awwUj-dqdyZ-u0ss_ORPTXBnf8H1dt6Ozq-Afyrbag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836305409</pqid></control><display><type>article</type><title>Adaptable and conflict colouring multigraphs with no cycles of length three or four</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aliaj, Jurgen ; Molloy, Michael</creator><creatorcontrib>Aliaj, Jurgen ; Molloy, Michael</creatorcontrib><description>The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is no edge e=uv $e=uv$ where τ(e)=σ(u)=σ(v) $\tau (e)=\sigma (u)=\sigma (v)$. Here we show that for a multigraph G $G$ with maximum degree Δ ${\rm{\Delta }}$ and no cycles of length 3 or 4, cha(G)≤(22+o(1))Δ∕ln Δ ${\text{ch}}_{a}(G)\,\le (2\sqrt{2}+o(1))\sqrt{{\rm{\Delta }}\unicode{x02215}\mathrm{ln}\unicode{x0200A}{\rm{\Delta }}}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of G $G$, which is a closely related parameter recently defined by Dvořák, Esperet, Kang and Ozeki.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22956</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>adaptable colouring ; Apexes ; Coloring ; conflict colouring ; Graph theory ; high‐girth graphs ; probabilistic method</subject><ispartof>Journal of graph theory, 2023-09, Vol.104 (1), p.188-219</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-5aaeaa504b85ed4b5262e6a8b98f99559db853e253cebbd14633367c3b287f323</citedby><cites>FETCH-LOGICAL-c3326-5aaeaa504b85ed4b5262e6a8b98f99559db853e253cebbd14633367c3b287f323</cites><orcidid>0000-0001-5435-1015 ; 0000-0001-8683-6199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22956$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22956$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Aliaj, Jurgen</creatorcontrib><creatorcontrib>Molloy, Michael</creatorcontrib><title>Adaptable and conflict colouring multigraphs with no cycles of length three or four</title><title>Journal of graph theory</title><description>The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is no edge e=uv $e=uv$ where τ(e)=σ(u)=σ(v) $\tau (e)=\sigma (u)=\sigma (v)$. Here we show that for a multigraph G $G$ with maximum degree Δ ${\rm{\Delta }}$ and no cycles of length 3 or 4, cha(G)≤(22+o(1))Δ∕ln Δ ${\text{ch}}_{a}(G)\,\le (2\sqrt{2}+o(1))\sqrt{{\rm{\Delta }}\unicode{x02215}\mathrm{ln}\unicode{x0200A}{\rm{\Delta }}}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of G $G$, which is a closely related parameter recently defined by Dvořák, Esperet, Kang and Ozeki.</description><subject>adaptable colouring</subject><subject>Apexes</subject><subject>Coloring</subject><subject>conflict colouring</subject><subject>Graph theory</subject><subject>high‐girth graphs</subject><subject>probabilistic method</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1j-xax-rCgqoEgfK2bIdO03lJsFOVfXtMYQrp13NfrMjDQD3GM0wQmS-r4cZIZLxCzDBSC4KhLG4BBNEeVlIRMprcJPSHmWZITEBH8tK94M2wUHdVtB2rQ-NHfISumNs2hoejmFo6qj7XYKnZtjBtoP2bINLsPMwuLbO2rCLzsEuQp9dt-DK65Dc3d-cgs_np-3qpdi8r19Xy01hKSW8YFo7rRkqjWCuKg0jnDiuhZHCS8mYrPKBOsKodcZUuOSUUr6w1BCx8JTQKXgY__ax-zq6NKh9Tm9zpCKCcopYiWSmHkfKxi6l6LzqY3PQ8awwUj-dqdyZ-u0ss_ORPTXBnf8H1dt6Ozq-Afyrbag</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Aliaj, Jurgen</creator><creator>Molloy, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5435-1015</orcidid><orcidid>https://orcid.org/0000-0001-8683-6199</orcidid></search><sort><creationdate>202309</creationdate><title>Adaptable and conflict colouring multigraphs with no cycles of length three or four</title><author>Aliaj, Jurgen ; Molloy, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-5aaeaa504b85ed4b5262e6a8b98f99559db853e253cebbd14633367c3b287f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptable colouring</topic><topic>Apexes</topic><topic>Coloring</topic><topic>conflict colouring</topic><topic>Graph theory</topic><topic>high‐girth graphs</topic><topic>probabilistic method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliaj, Jurgen</creatorcontrib><creatorcontrib>Molloy, Michael</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliaj, Jurgen</au><au>Molloy, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptable and conflict colouring multigraphs with no cycles of length three or four</atitle><jtitle>Journal of graph theory</jtitle><date>2023-09</date><risdate>2023</risdate><volume>104</volume><issue>1</issue><spage>188</spage><epage>219</epage><pages>188-219</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is no edge e=uv $e=uv$ where τ(e)=σ(u)=σ(v) $\tau (e)=\sigma (u)=\sigma (v)$. Here we show that for a multigraph G $G$ with maximum degree Δ ${\rm{\Delta }}$ and no cycles of length 3 or 4, cha(G)≤(22+o(1))Δ∕ln Δ ${\text{ch}}_{a}(G)\,\le (2\sqrt{2}+o(1))\sqrt{{\rm{\Delta }}\unicode{x02215}\mathrm{ln}\unicode{x0200A}{\rm{\Delta }}}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of G $G$, which is a closely related parameter recently defined by Dvořák, Esperet, Kang and Ozeki.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22956</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-5435-1015</orcidid><orcidid>https://orcid.org/0000-0001-8683-6199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2023-09, Vol.104 (1), p.188-219
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_2836305409
source Wiley Online Library Journals Frontfile Complete
subjects adaptable colouring
Apexes
Coloring
conflict colouring
Graph theory
high‐girth graphs
probabilistic method
title Adaptable and conflict colouring multigraphs with no cycles of length three or four
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptable%20and%20conflict%20colouring%20multigraphs%20with%20no%20cycles%20of%20length%20three%20or%20four&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Aliaj,%20Jurgen&rft.date=2023-09&rft.volume=104&rft.issue=1&rft.spage=188&rft.epage=219&rft.pages=188-219&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22956&rft_dat=%3Cproquest_cross%3E2836305409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836305409&rft_id=info:pmid/&rfr_iscdi=true