Adaptable and conflict colouring multigraphs with no cycles of length three or four
The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2023-09, Vol.104 (1), p.188-219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 219 |
---|---|
container_issue | 1 |
container_start_page | 188 |
container_title | Journal of graph theory |
container_volume | 104 |
creator | Aliaj, Jurgen Molloy, Michael |
description | The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is no edge e=uv $e=uv$ where τ(e)=σ(u)=σ(v) $\tau (e)=\sigma (u)=\sigma (v)$. Here we show that for a multigraph G $G$ with maximum degree Δ ${\rm{\Delta }}$ and no cycles of length 3 or 4, cha(G)≤(22+o(1))Δ∕ln Δ ${\text{ch}}_{a}(G)\,\le (2\sqrt{2}+o(1))\sqrt{{\rm{\Delta }}\unicode{x02215}\mathrm{ln}\unicode{x0200A}{\rm{\Delta }}}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of G $G$, which is a closely related parameter recently defined by Dvořák, Esperet, Kang and Ozeki. |
doi_str_mv | 10.1002/jgt.22956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836305409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836305409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-5aaeaa504b85ed4b5262e6a8b98f99559db853e253cebbd14633367c3b287f323</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1j-xax-rCgqoEgfK2bIdO03lJsFOVfXtMYQrp13NfrMjDQD3GM0wQmS-r4cZIZLxCzDBSC4KhLG4BBNEeVlIRMprcJPSHmWZITEBH8tK94M2wUHdVtB2rQ-NHfISumNs2hoejmFo6qj7XYKnZtjBtoP2bINLsPMwuLbO2rCLzsEuQp9dt-DK65Dc3d-cgs_np-3qpdi8r19Xy01hKSW8YFo7rRkqjWCuKg0jnDiuhZHCS8mYrPKBOsKodcZUuOSUUr6w1BCx8JTQKXgY__ax-zq6NKh9Tm9zpCKCcopYiWSmHkfKxi6l6LzqY3PQ8awwUj-dqdyZ-u0ss_ORPTXBnf8H1dt6Ozq-Afyrbag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836305409</pqid></control><display><type>article</type><title>Adaptable and conflict colouring multigraphs with no cycles of length three or four</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aliaj, Jurgen ; Molloy, Michael</creator><creatorcontrib>Aliaj, Jurgen ; Molloy, Michael</creatorcontrib><description>The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is no edge e=uv $e=uv$ where τ(e)=σ(u)=σ(v) $\tau (e)=\sigma (u)=\sigma (v)$. Here we show that for a multigraph G $G$ with maximum degree Δ ${\rm{\Delta }}$ and no cycles of length 3 or 4, cha(G)≤(22+o(1))Δ∕ln Δ ${\text{ch}}_{a}(G)\,\le (2\sqrt{2}+o(1))\sqrt{{\rm{\Delta }}\unicode{x02215}\mathrm{ln}\unicode{x0200A}{\rm{\Delta }}}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of G $G$, which is a closely related parameter recently defined by Dvořák, Esperet, Kang and Ozeki.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22956</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>adaptable colouring ; Apexes ; Coloring ; conflict colouring ; Graph theory ; high‐girth graphs ; probabilistic method</subject><ispartof>Journal of graph theory, 2023-09, Vol.104 (1), p.188-219</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-5aaeaa504b85ed4b5262e6a8b98f99559db853e253cebbd14633367c3b287f323</citedby><cites>FETCH-LOGICAL-c3326-5aaeaa504b85ed4b5262e6a8b98f99559db853e253cebbd14633367c3b287f323</cites><orcidid>0000-0001-5435-1015 ; 0000-0001-8683-6199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22956$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22956$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Aliaj, Jurgen</creatorcontrib><creatorcontrib>Molloy, Michael</creatorcontrib><title>Adaptable and conflict colouring multigraphs with no cycles of length three or four</title><title>Journal of graph theory</title><description>The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is no edge e=uv $e=uv$ where τ(e)=σ(u)=σ(v) $\tau (e)=\sigma (u)=\sigma (v)$. Here we show that for a multigraph G $G$ with maximum degree Δ ${\rm{\Delta }}$ and no cycles of length 3 or 4, cha(G)≤(22+o(1))Δ∕ln Δ ${\text{ch}}_{a}(G)\,\le (2\sqrt{2}+o(1))\sqrt{{\rm{\Delta }}\unicode{x02215}\mathrm{ln}\unicode{x0200A}{\rm{\Delta }}}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of G $G$, which is a closely related parameter recently defined by Dvořák, Esperet, Kang and Ozeki.</description><subject>adaptable colouring</subject><subject>Apexes</subject><subject>Coloring</subject><subject>conflict colouring</subject><subject>Graph theory</subject><subject>high‐girth graphs</subject><subject>probabilistic method</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1j-xax-rCgqoEgfK2bIdO03lJsFOVfXtMYQrp13NfrMjDQD3GM0wQmS-r4cZIZLxCzDBSC4KhLG4BBNEeVlIRMprcJPSHmWZITEBH8tK94M2wUHdVtB2rQ-NHfISumNs2hoejmFo6qj7XYKnZtjBtoP2bINLsPMwuLbO2rCLzsEuQp9dt-DK65Dc3d-cgs_np-3qpdi8r19Xy01hKSW8YFo7rRkqjWCuKg0jnDiuhZHCS8mYrPKBOsKodcZUuOSUUr6w1BCx8JTQKXgY__ax-zq6NKh9Tm9zpCKCcopYiWSmHkfKxi6l6LzqY3PQ8awwUj-dqdyZ-u0ss_ORPTXBnf8H1dt6Ozq-Afyrbag</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Aliaj, Jurgen</creator><creator>Molloy, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5435-1015</orcidid><orcidid>https://orcid.org/0000-0001-8683-6199</orcidid></search><sort><creationdate>202309</creationdate><title>Adaptable and conflict colouring multigraphs with no cycles of length three or four</title><author>Aliaj, Jurgen ; Molloy, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-5aaeaa504b85ed4b5262e6a8b98f99559db853e253cebbd14633367c3b287f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptable colouring</topic><topic>Apexes</topic><topic>Coloring</topic><topic>conflict colouring</topic><topic>Graph theory</topic><topic>high‐girth graphs</topic><topic>probabilistic method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliaj, Jurgen</creatorcontrib><creatorcontrib>Molloy, Michael</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliaj, Jurgen</au><au>Molloy, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptable and conflict colouring multigraphs with no cycles of length three or four</atitle><jtitle>Journal of graph theory</jtitle><date>2023-09</date><risdate>2023</risdate><volume>104</volume><issue>1</issue><spage>188</spage><epage>219</epage><pages>188-219</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>The adaptable choosability of a multigraph G $G$, denoted cha(G) ${\text{ch}}_{a}(G)$, is the smallest integer k $k$ such that any edge labelling, τ $\tau $, of G $G$ and any assignment of lists of size k $k$ to the vertices of G $G$ permits a list colouring, σ $\sigma $, of G $G$ such that there is no edge e=uv $e=uv$ where τ(e)=σ(u)=σ(v) $\tau (e)=\sigma (u)=\sigma (v)$. Here we show that for a multigraph G $G$ with maximum degree Δ ${\rm{\Delta }}$ and no cycles of length 3 or 4, cha(G)≤(22+o(1))Δ∕ln Δ ${\text{ch}}_{a}(G)\,\le (2\sqrt{2}+o(1))\sqrt{{\rm{\Delta }}\unicode{x02215}\mathrm{ln}\unicode{x0200A}{\rm{\Delta }}}$. Under natural restrictions we can show that the same bound holds for the conflict choosability of G $G$, which is a closely related parameter recently defined by Dvořák, Esperet, Kang and Ozeki.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22956</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-5435-1015</orcidid><orcidid>https://orcid.org/0000-0001-8683-6199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2023-09, Vol.104 (1), p.188-219 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_proquest_journals_2836305409 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | adaptable colouring Apexes Coloring conflict colouring Graph theory high‐girth graphs probabilistic method |
title | Adaptable and conflict colouring multigraphs with no cycles of length three or four |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptable%20and%20conflict%20colouring%20multigraphs%20with%20no%20cycles%20of%20length%20three%20or%20four&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Aliaj,%20Jurgen&rft.date=2023-09&rft.volume=104&rft.issue=1&rft.spage=188&rft.epage=219&rft.pages=188-219&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22956&rft_dat=%3Cproquest_cross%3E2836305409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836305409&rft_id=info:pmid/&rfr_iscdi=true |