Energy generation forecasting: elevating performance with machine and deep learning
Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management...
Gespeichert in:
Veröffentlicht in: | Computing 2023-08, Vol.105 (8), p.1623-1645 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1645 |
---|---|
container_issue | 8 |
container_start_page | 1623 |
container_title | Computing |
container_volume | 105 |
creator | Mystakidis, Aristeidis Ntozi, Evangelia Afentoulis, Konstantinos Koukaras, Paraskevas Gkaidatzis, Paschalis Ioannidis, Dimosthenis Tjortjis, Christos Tzovaras, Dimitrios |
description | Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management in Smart Grid architecture. This work aims to develop and test a new solution for EGF. It combines various methodologies running EGF tests on historical data from buildings. The experimentation yields different data resolutions (15 min, one hour, one day, etc.) while reporting accuracy errors. The optimal forecasting technique should be relevant to a variety of forecasting applications in a trial-and-error manner, while utilizing different forecasting strategies, ensemble approaches, and algorithms. The final forecasting evaluation incorporates performance metrics such as coefficient of determination (
R
2
), Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), presenting a comparative analysis of results. |
doi_str_mv | 10.1007/s00607-023-01164-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836110081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836110081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-174e60158d43fa55c23ec78d769d99dcf7a1cc0d63b03d491a81cdaed942e6a43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJk6atN1nWD1jwoIK3EJNpt8tuWpOu0n9vtII3TzMwz_sOPIScc7jkAMVVBFBQMMgEA86VZOMBmXEpFMshLw7JDIADk2X-ekxOYtwAJLSsZuRp6TE0I20wTTO0nad1F9CaOLS-uaa4xQ_zvdIeQ7rsjLdIP9thTXfGrluP1HhHHWJPt2iCT-gpOarNNuLZ75yTl9vl8-KerR7vHhY3K2aFEgPjhUQFPC-dFLXJc5sJtEXpClW5qnK2Lgy3FpwSbyCcrLgpuXUGXSUzVEaKObmYevvQve8xDnrT7YNPL3VWCsWTmZInKpsoG7oYA9a6D-3OhFFz0N_y9CRPJyP6R54eU0hMoZhg32D4q_4n9QXq1HOd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836110081</pqid></control><display><type>article</type><title>Energy generation forecasting: elevating performance with machine and deep learning</title><source>Springer Online Journals Complete</source><source>Business Source Complete</source><creator>Mystakidis, Aristeidis ; Ntozi, Evangelia ; Afentoulis, Konstantinos ; Koukaras, Paraskevas ; Gkaidatzis, Paschalis ; Ioannidis, Dimosthenis ; Tjortjis, Christos ; Tzovaras, Dimitrios</creator><creatorcontrib>Mystakidis, Aristeidis ; Ntozi, Evangelia ; Afentoulis, Konstantinos ; Koukaras, Paraskevas ; Gkaidatzis, Paschalis ; Ioannidis, Dimosthenis ; Tjortjis, Christos ; Tzovaras, Dimitrios</creatorcontrib><description>Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management in Smart Grid architecture. This work aims to develop and test a new solution for EGF. It combines various methodologies running EGF tests on historical data from buildings. The experimentation yields different data resolutions (15 min, one hour, one day, etc.) while reporting accuracy errors. The optimal forecasting technique should be relevant to a variety of forecasting applications in a trial-and-error manner, while utilizing different forecasting strategies, ensemble approaches, and algorithms. The final forecasting evaluation incorporates performance metrics such as coefficient of determination (
R
2
), Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), presenting a comparative analysis of results.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-023-01164-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Deep learning ; Energy management ; Error analysis ; Forecasting ; Information Systems Applications (incl.Internet) ; Machine learning ; Performance evaluation ; Performance measurement ; Regular Paper ; Smart grid ; Software Engineering ; Time series</subject><ispartof>Computing, 2023-08, Vol.105 (8), p.1623-1645</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-174e60158d43fa55c23ec78d769d99dcf7a1cc0d63b03d491a81cdaed942e6a43</citedby><cites>FETCH-LOGICAL-c363t-174e60158d43fa55c23ec78d769d99dcf7a1cc0d63b03d491a81cdaed942e6a43</cites><orcidid>0000-0002-5260-2906 ; 0000-0001-8263-9024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-023-01164-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-023-01164-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Mystakidis, Aristeidis</creatorcontrib><creatorcontrib>Ntozi, Evangelia</creatorcontrib><creatorcontrib>Afentoulis, Konstantinos</creatorcontrib><creatorcontrib>Koukaras, Paraskevas</creatorcontrib><creatorcontrib>Gkaidatzis, Paschalis</creatorcontrib><creatorcontrib>Ioannidis, Dimosthenis</creatorcontrib><creatorcontrib>Tjortjis, Christos</creatorcontrib><creatorcontrib>Tzovaras, Dimitrios</creatorcontrib><title>Energy generation forecasting: elevating performance with machine and deep learning</title><title>Computing</title><addtitle>Computing</addtitle><description>Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management in Smart Grid architecture. This work aims to develop and test a new solution for EGF. It combines various methodologies running EGF tests on historical data from buildings. The experimentation yields different data resolutions (15 min, one hour, one day, etc.) while reporting accuracy errors. The optimal forecasting technique should be relevant to a variety of forecasting applications in a trial-and-error manner, while utilizing different forecasting strategies, ensemble approaches, and algorithms. The final forecasting evaluation incorporates performance metrics such as coefficient of determination (
R
2
), Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), presenting a comparative analysis of results.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Energy management</subject><subject>Error analysis</subject><subject>Forecasting</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Regular Paper</subject><subject>Smart grid</subject><subject>Software Engineering</subject><subject>Time series</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJk6atN1nWD1jwoIK3EJNpt8tuWpOu0n9vtII3TzMwz_sOPIScc7jkAMVVBFBQMMgEA86VZOMBmXEpFMshLw7JDIADk2X-ekxOYtwAJLSsZuRp6TE0I20wTTO0nad1F9CaOLS-uaa4xQ_zvdIeQ7rsjLdIP9thTXfGrluP1HhHHWJPt2iCT-gpOarNNuLZ75yTl9vl8-KerR7vHhY3K2aFEgPjhUQFPC-dFLXJc5sJtEXpClW5qnK2Lgy3FpwSbyCcrLgpuXUGXSUzVEaKObmYevvQve8xDnrT7YNPL3VWCsWTmZInKpsoG7oYA9a6D-3OhFFz0N_y9CRPJyP6R54eU0hMoZhg32D4q_4n9QXq1HOd</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Mystakidis, Aristeidis</creator><creator>Ntozi, Evangelia</creator><creator>Afentoulis, Konstantinos</creator><creator>Koukaras, Paraskevas</creator><creator>Gkaidatzis, Paschalis</creator><creator>Ioannidis, Dimosthenis</creator><creator>Tjortjis, Christos</creator><creator>Tzovaras, Dimitrios</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5260-2906</orcidid><orcidid>https://orcid.org/0000-0001-8263-9024</orcidid></search><sort><creationdate>20230801</creationdate><title>Energy generation forecasting: elevating performance with machine and deep learning</title><author>Mystakidis, Aristeidis ; Ntozi, Evangelia ; Afentoulis, Konstantinos ; Koukaras, Paraskevas ; Gkaidatzis, Paschalis ; Ioannidis, Dimosthenis ; Tjortjis, Christos ; Tzovaras, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-174e60158d43fa55c23ec78d769d99dcf7a1cc0d63b03d491a81cdaed942e6a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Energy management</topic><topic>Error analysis</topic><topic>Forecasting</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Regular Paper</topic><topic>Smart grid</topic><topic>Software Engineering</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mystakidis, Aristeidis</creatorcontrib><creatorcontrib>Ntozi, Evangelia</creatorcontrib><creatorcontrib>Afentoulis, Konstantinos</creatorcontrib><creatorcontrib>Koukaras, Paraskevas</creatorcontrib><creatorcontrib>Gkaidatzis, Paschalis</creatorcontrib><creatorcontrib>Ioannidis, Dimosthenis</creatorcontrib><creatorcontrib>Tjortjis, Christos</creatorcontrib><creatorcontrib>Tzovaras, Dimitrios</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mystakidis, Aristeidis</au><au>Ntozi, Evangelia</au><au>Afentoulis, Konstantinos</au><au>Koukaras, Paraskevas</au><au>Gkaidatzis, Paschalis</au><au>Ioannidis, Dimosthenis</au><au>Tjortjis, Christos</au><au>Tzovaras, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy generation forecasting: elevating performance with machine and deep learning</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>105</volume><issue>8</issue><spage>1623</spage><epage>1645</epage><pages>1623-1645</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management in Smart Grid architecture. This work aims to develop and test a new solution for EGF. It combines various methodologies running EGF tests on historical data from buildings. The experimentation yields different data resolutions (15 min, one hour, one day, etc.) while reporting accuracy errors. The optimal forecasting technique should be relevant to a variety of forecasting applications in a trial-and-error manner, while utilizing different forecasting strategies, ensemble approaches, and algorithms. The final forecasting evaluation incorporates performance metrics such as coefficient of determination (
R
2
), Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), presenting a comparative analysis of results.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-023-01164-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5260-2906</orcidid><orcidid>https://orcid.org/0000-0001-8263-9024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2023-08, Vol.105 (8), p.1623-1645 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_journals_2836110081 |
source | Springer Online Journals Complete; Business Source Complete |
subjects | Algorithms Artificial Intelligence Artificial neural networks Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Deep learning Energy management Error analysis Forecasting Information Systems Applications (incl.Internet) Machine learning Performance evaluation Performance measurement Regular Paper Smart grid Software Engineering Time series |
title | Energy generation forecasting: elevating performance with machine and deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20generation%20forecasting:%20elevating%20performance%20with%20machine%20and%20deep%20learning&rft.jtitle=Computing&rft.au=Mystakidis,%20Aristeidis&rft.date=2023-08-01&rft.volume=105&rft.issue=8&rft.spage=1623&rft.epage=1645&rft.pages=1623-1645&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-023-01164-y&rft_dat=%3Cproquest_cross%3E2836110081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836110081&rft_id=info:pmid/&rfr_iscdi=true |