Energy generation forecasting: elevating performance with machine and deep learning

Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing 2023-08, Vol.105 (8), p.1623-1645
Hauptverfasser: Mystakidis, Aristeidis, Ntozi, Evangelia, Afentoulis, Konstantinos, Koukaras, Paraskevas, Gkaidatzis, Paschalis, Ioannidis, Dimosthenis, Tjortjis, Christos, Tzovaras, Dimitrios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1645
container_issue 8
container_start_page 1623
container_title Computing
container_volume 105
creator Mystakidis, Aristeidis
Ntozi, Evangelia
Afentoulis, Konstantinos
Koukaras, Paraskevas
Gkaidatzis, Paschalis
Ioannidis, Dimosthenis
Tjortjis, Christos
Tzovaras, Dimitrios
description Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management in Smart Grid architecture. This work aims to develop and test a new solution for EGF. It combines various methodologies running EGF tests on historical data from buildings. The experimentation yields different data resolutions (15 min, one hour, one day, etc.) while reporting accuracy errors. The optimal forecasting technique should be relevant to a variety of forecasting applications in a trial-and-error manner, while utilizing different forecasting strategies, ensemble approaches, and algorithms. The final forecasting evaluation incorporates performance metrics such as coefficient of determination ( R 2 ), Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), presenting a comparative analysis of results.
doi_str_mv 10.1007/s00607-023-01164-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836110081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836110081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-174e60158d43fa55c23ec78d769d99dcf7a1cc0d63b03d491a81cdaed942e6a43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJk6atN1nWD1jwoIK3EJNpt8tuWpOu0n9vtII3TzMwz_sOPIScc7jkAMVVBFBQMMgEA86VZOMBmXEpFMshLw7JDIADk2X-ekxOYtwAJLSsZuRp6TE0I20wTTO0nad1F9CaOLS-uaa4xQ_zvdIeQ7rsjLdIP9thTXfGrluP1HhHHWJPt2iCT-gpOarNNuLZ75yTl9vl8-KerR7vHhY3K2aFEgPjhUQFPC-dFLXJc5sJtEXpClW5qnK2Lgy3FpwSbyCcrLgpuXUGXSUzVEaKObmYevvQve8xDnrT7YNPL3VWCsWTmZInKpsoG7oYA9a6D-3OhFFz0N_y9CRPJyP6R54eU0hMoZhg32D4q_4n9QXq1HOd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836110081</pqid></control><display><type>article</type><title>Energy generation forecasting: elevating performance with machine and deep learning</title><source>Springer Online Journals Complete</source><source>Business Source Complete</source><creator>Mystakidis, Aristeidis ; Ntozi, Evangelia ; Afentoulis, Konstantinos ; Koukaras, Paraskevas ; Gkaidatzis, Paschalis ; Ioannidis, Dimosthenis ; Tjortjis, Christos ; Tzovaras, Dimitrios</creator><creatorcontrib>Mystakidis, Aristeidis ; Ntozi, Evangelia ; Afentoulis, Konstantinos ; Koukaras, Paraskevas ; Gkaidatzis, Paschalis ; Ioannidis, Dimosthenis ; Tjortjis, Christos ; Tzovaras, Dimitrios</creatorcontrib><description>Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management in Smart Grid architecture. This work aims to develop and test a new solution for EGF. It combines various methodologies running EGF tests on historical data from buildings. The experimentation yields different data resolutions (15 min, one hour, one day, etc.) while reporting accuracy errors. The optimal forecasting technique should be relevant to a variety of forecasting applications in a trial-and-error manner, while utilizing different forecasting strategies, ensemble approaches, and algorithms. The final forecasting evaluation incorporates performance metrics such as coefficient of determination ( R 2 ), Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), presenting a comparative analysis of results.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-023-01164-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Deep learning ; Energy management ; Error analysis ; Forecasting ; Information Systems Applications (incl.Internet) ; Machine learning ; Performance evaluation ; Performance measurement ; Regular Paper ; Smart grid ; Software Engineering ; Time series</subject><ispartof>Computing, 2023-08, Vol.105 (8), p.1623-1645</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-174e60158d43fa55c23ec78d769d99dcf7a1cc0d63b03d491a81cdaed942e6a43</citedby><cites>FETCH-LOGICAL-c363t-174e60158d43fa55c23ec78d769d99dcf7a1cc0d63b03d491a81cdaed942e6a43</cites><orcidid>0000-0002-5260-2906 ; 0000-0001-8263-9024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-023-01164-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-023-01164-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Mystakidis, Aristeidis</creatorcontrib><creatorcontrib>Ntozi, Evangelia</creatorcontrib><creatorcontrib>Afentoulis, Konstantinos</creatorcontrib><creatorcontrib>Koukaras, Paraskevas</creatorcontrib><creatorcontrib>Gkaidatzis, Paschalis</creatorcontrib><creatorcontrib>Ioannidis, Dimosthenis</creatorcontrib><creatorcontrib>Tjortjis, Christos</creatorcontrib><creatorcontrib>Tzovaras, Dimitrios</creatorcontrib><title>Energy generation forecasting: elevating performance with machine and deep learning</title><title>Computing</title><addtitle>Computing</addtitle><description>Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management in Smart Grid architecture. This work aims to develop and test a new solution for EGF. It combines various methodologies running EGF tests on historical data from buildings. The experimentation yields different data resolutions (15 min, one hour, one day, etc.) while reporting accuracy errors. The optimal forecasting technique should be relevant to a variety of forecasting applications in a trial-and-error manner, while utilizing different forecasting strategies, ensemble approaches, and algorithms. The final forecasting evaluation incorporates performance metrics such as coefficient of determination ( R 2 ), Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), presenting a comparative analysis of results.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Energy management</subject><subject>Error analysis</subject><subject>Forecasting</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Regular Paper</subject><subject>Smart grid</subject><subject>Software Engineering</subject><subject>Time series</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJk6atN1nWD1jwoIK3EJNpt8tuWpOu0n9vtII3TzMwz_sOPIScc7jkAMVVBFBQMMgEA86VZOMBmXEpFMshLw7JDIADk2X-ekxOYtwAJLSsZuRp6TE0I20wTTO0nad1F9CaOLS-uaa4xQ_zvdIeQ7rsjLdIP9thTXfGrluP1HhHHWJPt2iCT-gpOarNNuLZ75yTl9vl8-KerR7vHhY3K2aFEgPjhUQFPC-dFLXJc5sJtEXpClW5qnK2Lgy3FpwSbyCcrLgpuXUGXSUzVEaKObmYevvQve8xDnrT7YNPL3VWCsWTmZInKpsoG7oYA9a6D-3OhFFz0N_y9CRPJyP6R54eU0hMoZhg32D4q_4n9QXq1HOd</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Mystakidis, Aristeidis</creator><creator>Ntozi, Evangelia</creator><creator>Afentoulis, Konstantinos</creator><creator>Koukaras, Paraskevas</creator><creator>Gkaidatzis, Paschalis</creator><creator>Ioannidis, Dimosthenis</creator><creator>Tjortjis, Christos</creator><creator>Tzovaras, Dimitrios</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5260-2906</orcidid><orcidid>https://orcid.org/0000-0001-8263-9024</orcidid></search><sort><creationdate>20230801</creationdate><title>Energy generation forecasting: elevating performance with machine and deep learning</title><author>Mystakidis, Aristeidis ; Ntozi, Evangelia ; Afentoulis, Konstantinos ; Koukaras, Paraskevas ; Gkaidatzis, Paschalis ; Ioannidis, Dimosthenis ; Tjortjis, Christos ; Tzovaras, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-174e60158d43fa55c23ec78d769d99dcf7a1cc0d63b03d491a81cdaed942e6a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Energy management</topic><topic>Error analysis</topic><topic>Forecasting</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Regular Paper</topic><topic>Smart grid</topic><topic>Software Engineering</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mystakidis, Aristeidis</creatorcontrib><creatorcontrib>Ntozi, Evangelia</creatorcontrib><creatorcontrib>Afentoulis, Konstantinos</creatorcontrib><creatorcontrib>Koukaras, Paraskevas</creatorcontrib><creatorcontrib>Gkaidatzis, Paschalis</creatorcontrib><creatorcontrib>Ioannidis, Dimosthenis</creatorcontrib><creatorcontrib>Tjortjis, Christos</creatorcontrib><creatorcontrib>Tzovaras, Dimitrios</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mystakidis, Aristeidis</au><au>Ntozi, Evangelia</au><au>Afentoulis, Konstantinos</au><au>Koukaras, Paraskevas</au><au>Gkaidatzis, Paschalis</au><au>Ioannidis, Dimosthenis</au><au>Tjortjis, Christos</au><au>Tzovaras, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy generation forecasting: elevating performance with machine and deep learning</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>105</volume><issue>8</issue><spage>1623</spage><epage>1645</epage><pages>1623-1645</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>Distribution System Operators (DSOs) and Aggregators benefit from novel Energy Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make it easier to deal with energy imbalances between production and consumption. It also aids operations such as Demand Response (DR) management in Smart Grid architecture. This work aims to develop and test a new solution for EGF. It combines various methodologies running EGF tests on historical data from buildings. The experimentation yields different data resolutions (15 min, one hour, one day, etc.) while reporting accuracy errors. The optimal forecasting technique should be relevant to a variety of forecasting applications in a trial-and-error manner, while utilizing different forecasting strategies, ensemble approaches, and algorithms. The final forecasting evaluation incorporates performance metrics such as coefficient of determination ( R 2 ), Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), presenting a comparative analysis of results.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-023-01164-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5260-2906</orcidid><orcidid>https://orcid.org/0000-0001-8263-9024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-485X
ispartof Computing, 2023-08, Vol.105 (8), p.1623-1645
issn 0010-485X
1436-5057
language eng
recordid cdi_proquest_journals_2836110081
source Springer Online Journals Complete; Business Source Complete
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Deep learning
Energy management
Error analysis
Forecasting
Information Systems Applications (incl.Internet)
Machine learning
Performance evaluation
Performance measurement
Regular Paper
Smart grid
Software Engineering
Time series
title Energy generation forecasting: elevating performance with machine and deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20generation%20forecasting:%20elevating%20performance%20with%20machine%20and%20deep%20learning&rft.jtitle=Computing&rft.au=Mystakidis,%20Aristeidis&rft.date=2023-08-01&rft.volume=105&rft.issue=8&rft.spage=1623&rft.epage=1645&rft.pages=1623-1645&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-023-01164-y&rft_dat=%3Cproquest_cross%3E2836110081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836110081&rft_id=info:pmid/&rfr_iscdi=true