Dispersive Non-reciprocity between a Qubit and a Cavity

The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other, and in closed systems is necessarily bidirectional, i.e.~reciprocal. Here, we present an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Wang, Ying-Ying, Yu-Xin, Wang, Sean van Geldern, Connolly, Thomas, Clerk, Aashish A, Wang, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Ying-Ying
Yu-Xin, Wang
Sean van Geldern
Connolly, Thomas
Clerk, Aashish A
Wang, Chen
description The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other, and in closed systems is necessarily bidirectional, i.e.~reciprocal. Here, we present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including asymmetric frequency pulls and photon shot-noise dephasing, under varying degrees of non-reciprocity by tuning the magnetic field bias of a ferrite component in situ. Furthermore, we show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model, which provides a compact description of the non-reciprocal interaction without requiring a full understanding of the complex dynamics of the intermediary system. Our result provides an example of quantum non-reciprocal phenomena beyond the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2836086717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836086717</sourcerecordid><originalsourceid>FETCH-proquest_journals_28360867173</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwd8ksLkgtKs4sS1Xwy8_TLUpNziwoyk_OLKlUSEotKU9NzVNIVAgsTcosUUjMSwGynRPLgJI8DKxpiTnFqbxQmptB2c01xNlDF6i5sDS1uCQ-K7-0KA8oFW9kYWxmYGFmbmhuTJwqAPPZNXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836086717</pqid></control><display><type>article</type><title>Dispersive Non-reciprocity between a Qubit and a Cavity</title><source>Free E- Journals</source><creator>Wang, Ying-Ying ; Yu-Xin, Wang ; Sean van Geldern ; Connolly, Thomas ; Clerk, Aashish A ; Wang, Chen</creator><creatorcontrib>Wang, Ying-Ying ; Yu-Xin, Wang ; Sean van Geldern ; Connolly, Thomas ; Clerk, Aashish A ; Wang, Chen</creatorcontrib><description>The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other, and in closed systems is necessarily bidirectional, i.e.~reciprocal. Here, we present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including asymmetric frequency pulls and photon shot-noise dephasing, under varying degrees of non-reciprocity by tuning the magnetic field bias of a ferrite component in situ. Furthermore, we show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model, which provides a compact description of the non-reciprocal interaction without requiring a full understanding of the complex dynamics of the intermediary system. Our result provides an example of quantum non-reciprocal phenomena beyond the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Circuits ; Dispersion ; Frequency shift ; Hamiltonian functions ; Quantum electrodynamics ; Qubits (quantum computing) ; Reciprocity</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wang, Ying-Ying</creatorcontrib><creatorcontrib>Yu-Xin, Wang</creatorcontrib><creatorcontrib>Sean van Geldern</creatorcontrib><creatorcontrib>Connolly, Thomas</creatorcontrib><creatorcontrib>Clerk, Aashish A</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><title>Dispersive Non-reciprocity between a Qubit and a Cavity</title><title>arXiv.org</title><description>The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other, and in closed systems is necessarily bidirectional, i.e.~reciprocal. Here, we present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including asymmetric frequency pulls and photon shot-noise dephasing, under varying degrees of non-reciprocity by tuning the magnetic field bias of a ferrite component in situ. Furthermore, we show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model, which provides a compact description of the non-reciprocal interaction without requiring a full understanding of the complex dynamics of the intermediary system. Our result provides an example of quantum non-reciprocal phenomena beyond the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.</description><subject>Circuits</subject><subject>Dispersion</subject><subject>Frequency shift</subject><subject>Hamiltonian functions</subject><subject>Quantum electrodynamics</subject><subject>Qubits (quantum computing)</subject><subject>Reciprocity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwd8ksLkgtKs4sS1Xwy8_TLUpNziwoyk_OLKlUSEotKU9NzVNIVAgsTcosUUjMSwGynRPLgJI8DKxpiTnFqbxQmptB2c01xNlDF6i5sDS1uCQ-K7-0KA8oFW9kYWxmYGFmbmhuTJwqAPPZNXM</recordid><startdate>20240309</startdate><enddate>20240309</enddate><creator>Wang, Ying-Ying</creator><creator>Yu-Xin, Wang</creator><creator>Sean van Geldern</creator><creator>Connolly, Thomas</creator><creator>Clerk, Aashish A</creator><creator>Wang, Chen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240309</creationdate><title>Dispersive Non-reciprocity between a Qubit and a Cavity</title><author>Wang, Ying-Ying ; Yu-Xin, Wang ; Sean van Geldern ; Connolly, Thomas ; Clerk, Aashish A ; Wang, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28360867173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuits</topic><topic>Dispersion</topic><topic>Frequency shift</topic><topic>Hamiltonian functions</topic><topic>Quantum electrodynamics</topic><topic>Qubits (quantum computing)</topic><topic>Reciprocity</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ying-Ying</creatorcontrib><creatorcontrib>Yu-Xin, Wang</creatorcontrib><creatorcontrib>Sean van Geldern</creatorcontrib><creatorcontrib>Connolly, Thomas</creatorcontrib><creatorcontrib>Clerk, Aashish A</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ying-Ying</au><au>Yu-Xin, Wang</au><au>Sean van Geldern</au><au>Connolly, Thomas</au><au>Clerk, Aashish A</au><au>Wang, Chen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dispersive Non-reciprocity between a Qubit and a Cavity</atitle><jtitle>arXiv.org</jtitle><date>2024-03-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other, and in closed systems is necessarily bidirectional, i.e.~reciprocal. Here, we present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including asymmetric frequency pulls and photon shot-noise dephasing, under varying degrees of non-reciprocity by tuning the magnetic field bias of a ferrite component in situ. Furthermore, we show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model, which provides a compact description of the non-reciprocal interaction without requiring a full understanding of the complex dynamics of the intermediary system. Our result provides an example of quantum non-reciprocal phenomena beyond the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2836086717
source Free E- Journals
subjects Circuits
Dispersion
Frequency shift
Hamiltonian functions
Quantum electrodynamics
Qubits (quantum computing)
Reciprocity
title Dispersive Non-reciprocity between a Qubit and a Cavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dispersive%20Non-reciprocity%20between%20a%20Qubit%20and%20a%20Cavity&rft.jtitle=arXiv.org&rft.au=Wang,%20Ying-Ying&rft.date=2024-03-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2836086717%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836086717&rft_id=info:pmid/&rfr_iscdi=true