Capacity estimation of Li-ion battery based on transformer-adversarial discriminative domain adaptation
Lithium-ion batteries are widely used in various electronic devices as well as electric vehicles, and accurate estimation of the battery capacity is important to ensure safe and reliable operation of the system. However, in practice, the complex working conditions and the limitation of the number of...
Gespeichert in:
Veröffentlicht in: | AIP advances 2023-07, Vol.13 (7), p.075113-075113-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 075113-12 |
---|---|
container_issue | 7 |
container_start_page | 075113 |
container_title | AIP advances |
container_volume | 13 |
creator | Liu, Xin Yang, Changbo Meng, Yanmei Zhu, Jihong Duan, Yijian |
description | Lithium-ion batteries are widely used in various electronic devices as well as electric vehicles, and accurate estimation of the battery capacity is important to ensure safe and reliable operation of the system. However, in practice, the complex working conditions and the limitation of the number of charge/discharge cycles lead to insufficient historical data and inaccurate capacity estimation. In order to improve the adaptability as well as accuracy under different operating conditions, this paper proposes a lithium-ion battery capacity estimation model based on Transformer-Adversarial Discriminative Domain Adaptation (T-ADDA). The model takes charging voltage, charging current, and charging temperature as inputs and uses a transformer network to extract the time series features from the data. Then, adversarial domain adaptation is trained on the source and target domain data by the domain discrimination network of the ADDA model so as to find the domain invariant features between the source and target domains. Finally, the regression network of ADDA is used to achieve cross-domain prediction for the target domain data. The experimental results show that the T-ADDA model can accurately achieve cross-domain prediction and that the average error of prediction under different operating conditions is only 3.9225%. Therefore, the T-ADDA model has good adaptability and accuracy, and it can significantly improve the performance of lithium-ion battery capacity estimation. |
doi_str_mv | 10.1063/5.0152038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2836064690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5edc25534aa5440f9524e1be5a5eacf5</doaj_id><sourcerecordid>2836064690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a80693af8dc31a76aba559501423b1ec891653d6b95c3effa9da3c8c7e4933b13</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRUKoH_8GCJ4XVZJNJN0cpfkHBi57DbD4kpd2sSSz03xu7RTyZywzDw5Phnaq6pOSWEsHu4JZQaAnrjqqzlkLXsLYVx3_60-oipRUpj0tKOn5WfSxwRO3zrrYp-w1mH4Y6uHrpm5-ux5xt3JWarKnLIEcckgtxY2ODZmtjwuhxXRufdPQbPxTD1tYmbNAPNRoc8955Xp04XCd7caiz6v3x4W3x3Cxfn14W98tGM2C5wY4IydB1RjOKc4E9AkgglLesp1Z3kgpgRvQSNLPOoTTIdKfnlktWCDarXiavCbhSY1kJ404F9Go_CPFDYcxer60Ca3QLwDgicE6chJZb2ltAsKgdFNfV5Bpj-Pwq-ahV-IpDWV-1HRNEcCFJoa4nSseQUrTu91dK1M9ZFKjDWQp7M7GpRL7P5R_4G4HRjWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836064690</pqid></control><display><type>article</type><title>Capacity estimation of Li-ion battery based on transformer-adversarial discriminative domain adaptation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Xin ; Yang, Changbo ; Meng, Yanmei ; Zhu, Jihong ; Duan, Yijian</creator><creatorcontrib>Liu, Xin ; Yang, Changbo ; Meng, Yanmei ; Zhu, Jihong ; Duan, Yijian</creatorcontrib><description>Lithium-ion batteries are widely used in various electronic devices as well as electric vehicles, and accurate estimation of the battery capacity is important to ensure safe and reliable operation of the system. However, in practice, the complex working conditions and the limitation of the number of charge/discharge cycles lead to insufficient historical data and inaccurate capacity estimation. In order to improve the adaptability as well as accuracy under different operating conditions, this paper proposes a lithium-ion battery capacity estimation model based on Transformer-Adversarial Discriminative Domain Adaptation (T-ADDA). The model takes charging voltage, charging current, and charging temperature as inputs and uses a transformer network to extract the time series features from the data. Then, adversarial domain adaptation is trained on the source and target domain data by the domain discrimination network of the ADDA model so as to find the domain invariant features between the source and target domains. Finally, the regression network of ADDA is used to achieve cross-domain prediction for the target domain data. The experimental results show that the T-ADDA model can accurately achieve cross-domain prediction and that the average error of prediction under different operating conditions is only 3.9225%. Therefore, the T-ADDA model has good adaptability and accuracy, and it can significantly improve the performance of lithium-ion battery capacity estimation.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0152038</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptation ; Charging ; Electric vehicles ; Lithium ; Lithium-ion batteries ; Rechargeable batteries ; Transformers</subject><ispartof>AIP advances, 2023-07, Vol.13 (7), p.075113-075113-12</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-a80693af8dc31a76aba559501423b1ec891653d6b95c3effa9da3c8c7e4933b13</cites><orcidid>0000-0001-5242-4508 ; 0000-0002-3615-9465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Yang, Changbo</creatorcontrib><creatorcontrib>Meng, Yanmei</creatorcontrib><creatorcontrib>Zhu, Jihong</creatorcontrib><creatorcontrib>Duan, Yijian</creatorcontrib><title>Capacity estimation of Li-ion battery based on transformer-adversarial discriminative domain adaptation</title><title>AIP advances</title><description>Lithium-ion batteries are widely used in various electronic devices as well as electric vehicles, and accurate estimation of the battery capacity is important to ensure safe and reliable operation of the system. However, in practice, the complex working conditions and the limitation of the number of charge/discharge cycles lead to insufficient historical data and inaccurate capacity estimation. In order to improve the adaptability as well as accuracy under different operating conditions, this paper proposes a lithium-ion battery capacity estimation model based on Transformer-Adversarial Discriminative Domain Adaptation (T-ADDA). The model takes charging voltage, charging current, and charging temperature as inputs and uses a transformer network to extract the time series features from the data. Then, adversarial domain adaptation is trained on the source and target domain data by the domain discrimination network of the ADDA model so as to find the domain invariant features between the source and target domains. Finally, the regression network of ADDA is used to achieve cross-domain prediction for the target domain data. The experimental results show that the T-ADDA model can accurately achieve cross-domain prediction and that the average error of prediction under different operating conditions is only 3.9225%. Therefore, the T-ADDA model has good adaptability and accuracy, and it can significantly improve the performance of lithium-ion battery capacity estimation.</description><subject>Adaptation</subject><subject>Charging</subject><subject>Electric vehicles</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Rechargeable batteries</subject><subject>Transformers</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LAzEQhhdRUKoH_8GCJ4XVZJNJN0cpfkHBi57DbD4kpd2sSSz03xu7RTyZywzDw5Phnaq6pOSWEsHu4JZQaAnrjqqzlkLXsLYVx3_60-oipRUpj0tKOn5WfSxwRO3zrrYp-w1mH4Y6uHrpm5-ux5xt3JWarKnLIEcckgtxY2ODZmtjwuhxXRufdPQbPxTD1tYmbNAPNRoc8955Xp04XCd7caiz6v3x4W3x3Cxfn14W98tGM2C5wY4IydB1RjOKc4E9AkgglLesp1Z3kgpgRvQSNLPOoTTIdKfnlktWCDarXiavCbhSY1kJ404F9Go_CPFDYcxer60Ca3QLwDgicE6chJZb2ltAsKgdFNfV5Bpj-Pwq-ahV-IpDWV-1HRNEcCFJoa4nSseQUrTu91dK1M9ZFKjDWQp7M7GpRL7P5R_4G4HRjWA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Liu, Xin</creator><creator>Yang, Changbo</creator><creator>Meng, Yanmei</creator><creator>Zhu, Jihong</creator><creator>Duan, Yijian</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5242-4508</orcidid><orcidid>https://orcid.org/0000-0002-3615-9465</orcidid></search><sort><creationdate>20230701</creationdate><title>Capacity estimation of Li-ion battery based on transformer-adversarial discriminative domain adaptation</title><author>Liu, Xin ; Yang, Changbo ; Meng, Yanmei ; Zhu, Jihong ; Duan, Yijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a80693af8dc31a76aba559501423b1ec891653d6b95c3effa9da3c8c7e4933b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Charging</topic><topic>Electric vehicles</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Rechargeable batteries</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Yang, Changbo</creatorcontrib><creatorcontrib>Meng, Yanmei</creatorcontrib><creatorcontrib>Zhu, Jihong</creatorcontrib><creatorcontrib>Duan, Yijian</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xin</au><au>Yang, Changbo</au><au>Meng, Yanmei</au><au>Zhu, Jihong</au><au>Duan, Yijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity estimation of Li-ion battery based on transformer-adversarial discriminative domain adaptation</atitle><jtitle>AIP advances</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>13</volume><issue>7</issue><spage>075113</spage><epage>075113-12</epage><pages>075113-075113-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Lithium-ion batteries are widely used in various electronic devices as well as electric vehicles, and accurate estimation of the battery capacity is important to ensure safe and reliable operation of the system. However, in practice, the complex working conditions and the limitation of the number of charge/discharge cycles lead to insufficient historical data and inaccurate capacity estimation. In order to improve the adaptability as well as accuracy under different operating conditions, this paper proposes a lithium-ion battery capacity estimation model based on Transformer-Adversarial Discriminative Domain Adaptation (T-ADDA). The model takes charging voltage, charging current, and charging temperature as inputs and uses a transformer network to extract the time series features from the data. Then, adversarial domain adaptation is trained on the source and target domain data by the domain discrimination network of the ADDA model so as to find the domain invariant features between the source and target domains. Finally, the regression network of ADDA is used to achieve cross-domain prediction for the target domain data. The experimental results show that the T-ADDA model can accurately achieve cross-domain prediction and that the average error of prediction under different operating conditions is only 3.9225%. Therefore, the T-ADDA model has good adaptability and accuracy, and it can significantly improve the performance of lithium-ion battery capacity estimation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0152038</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5242-4508</orcidid><orcidid>https://orcid.org/0000-0002-3615-9465</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2023-07, Vol.13 (7), p.075113-075113-12 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2836064690 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptation Charging Electric vehicles Lithium Lithium-ion batteries Rechargeable batteries Transformers |
title | Capacity estimation of Li-ion battery based on transformer-adversarial discriminative domain adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity%20estimation%20of%20Li-ion%20battery%20based%20on%20transformer-adversarial%20discriminative%20domain%20adaptation&rft.jtitle=AIP%20advances&rft.au=Liu,%20Xin&rft.date=2023-07-01&rft.volume=13&rft.issue=7&rft.spage=075113&rft.epage=075113-12&rft.pages=075113-075113-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0152038&rft_dat=%3Cproquest_doaj_%3E2836064690%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836064690&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5edc25534aa5440f9524e1be5a5eacf5&rfr_iscdi=true |