An intuitionistic set-theoretical model of fully dependent CC $^{\boldsymbol\omega}
Werner’s set-theoretical model is one of the simplest models of CIC. It combines a functional view of predicative universes with a collapsed view of the impredicative sort “ ${\tt Prop}$ ”. However, this model of ${\tt Prop}$ is so coarse that the principle of excluded middle $P \lor \neg P$ holds....
Gespeichert in:
Veröffentlicht in: | Mathematical structures in computer science 2023-01, Vol.33 (1), p.1-32 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Werner’s set-theoretical model is one of the simplest models of CIC. It combines a functional view of predicative universes with a collapsed view of the impredicative sort “
${\tt Prop}$
”. However, this model of
${\tt Prop}$
is so coarse that the principle of excluded middle
$P \lor \neg P$
holds. Following our previous work, we interpret
${\tt Prop}$
into a topological space (a special case of Heyting algebra) to make the model more intuitionistic without sacrificing simplicity. We improve on that work by providing a full interpretation of dependent product types, using Alexandroff spaces. We also extend our approach to inductive types by adding support for
${\mathsf{list}}$
s. |
---|---|
ISSN: | 0960-1295 1469-8072 |
DOI: | 10.1017/S0960129523000087 |