Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning

Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-ter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems automation, and systems, 2023-07, Vol.21 (7), p.2350-2362
Hauptverfasser: Zhang, Tianle, Liu, Zhen, Pu, Zhiqiang, Yi, Jianqiang, Liang, Yanyan, Zhang, Du
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2362
container_issue 7
container_start_page 2350
container_title International journal of control, automation, and systems
container_volume 21
creator Zhang, Tianle
Liu, Zhen
Pu, Zhiqiang
Yi, Jianqiang
Liang, Yanyan
Zhang, Du
description Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatial-temporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL.
doi_str_mv 10.1007/s12555-022-0171-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835969574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835969574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4faed0c0e03ea81492f4200866d22575336d300d6304b57c4033748b0e00c23b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3TyubtHaasVioIf55DNZtdIm9Rka6m_3i0VPHmawzzPO8yL0CWFawpQ3GTKpJQEGCNAC0q-j9CIAUgioGLHaERlVRIlhDpFZzl_ACjFqmKEVs-xjj1-2dRdNEvSbXzjGvxovnxneh8D9gFPd8GsvMWTFLf77Sx8-RTDyoU-463v3_Hcu2SSfffWLPHUuTV-dj60MVm3p_DCmRR86M7RSWuW2V38zjF6u5u9TuZk8XT_MLldEMtU2RPRGteABQfcmZKKirVieKZUqmFMFpJz1XCARnEQtSysAM4LUdaDAJbxmo_R1SF3neLnxuVef8RNCsNJzUouK1XJQgwUPVA2xZyTa_U6-ZVJO01B71vVh1b10Kret6q_B4cdnDywoXPpL_l_6Qd_9XrJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835969574</pqid></control><display><type>article</type><title>Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning</title><source>SpringerLink Journals</source><creator>Zhang, Tianle ; Liu, Zhen ; Pu, Zhiqiang ; Yi, Jianqiang ; Liang, Yanyan ; Zhang, Du</creator><creatorcontrib>Zhang, Tianle ; Liu, Zhen ; Pu, Zhiqiang ; Yi, Jianqiang ; Liang, Yanyan ; Zhang, Du</creatorcontrib><description>Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatial-temporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-022-0171-z</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Barriers ; Collision avoidance ; Control ; Deep learning ; Engineering ; Mechatronics ; Navigation ; Regular Papers ; Robotics ; Robots</subject><ispartof>International journal of control, automation, and systems, 2023-07, Vol.21 (7), p.2350-2362</ispartof><rights>ICROS, KIEE and Springer 2023</rights><rights>ICROS, KIEE and Springer 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4faed0c0e03ea81492f4200866d22575336d300d6304b57c4033748b0e00c23b3</cites><orcidid>0000-0002-0779-5905 ; 0000-0002-4841-4048 ; 0000-0002-5780-8540 ; 0000-0003-1610-2338 ; 0000-0003-3268-9482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12555-022-0171-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12555-022-0171-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Tianle</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Pu, Zhiqiang</creatorcontrib><creatorcontrib>Yi, Jianqiang</creatorcontrib><creatorcontrib>Liang, Yanyan</creatorcontrib><creatorcontrib>Zhang, Du</creatorcontrib><title>Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatial-temporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL.</description><subject>Barriers</subject><subject>Collision avoidance</subject><subject>Control</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Navigation</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Robots</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3TyubtHaasVioIf55DNZtdIm9Rka6m_3i0VPHmawzzPO8yL0CWFawpQ3GTKpJQEGCNAC0q-j9CIAUgioGLHaERlVRIlhDpFZzl_ACjFqmKEVs-xjj1-2dRdNEvSbXzjGvxovnxneh8D9gFPd8GsvMWTFLf77Sx8-RTDyoU-463v3_Hcu2SSfffWLPHUuTV-dj60MVm3p_DCmRR86M7RSWuW2V38zjF6u5u9TuZk8XT_MLldEMtU2RPRGteABQfcmZKKirVieKZUqmFMFpJz1XCARnEQtSysAM4LUdaDAJbxmo_R1SF3neLnxuVef8RNCsNJzUouK1XJQgwUPVA2xZyTa_U6-ZVJO01B71vVh1b10Kret6q_B4cdnDywoXPpL_l_6Qd_9XrJ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhang, Tianle</creator><creator>Liu, Zhen</creator><creator>Pu, Zhiqiang</creator><creator>Yi, Jianqiang</creator><creator>Liang, Yanyan</creator><creator>Zhang, Du</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0779-5905</orcidid><orcidid>https://orcid.org/0000-0002-4841-4048</orcidid><orcidid>https://orcid.org/0000-0002-5780-8540</orcidid><orcidid>https://orcid.org/0000-0003-1610-2338</orcidid><orcidid>https://orcid.org/0000-0003-3268-9482</orcidid></search><sort><creationdate>20230701</creationdate><title>Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning</title><author>Zhang, Tianle ; Liu, Zhen ; Pu, Zhiqiang ; Yi, Jianqiang ; Liang, Yanyan ; Zhang, Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4faed0c0e03ea81492f4200866d22575336d300d6304b57c4033748b0e00c23b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barriers</topic><topic>Collision avoidance</topic><topic>Control</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Navigation</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianle</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Pu, Zhiqiang</creatorcontrib><creatorcontrib>Yi, Jianqiang</creatorcontrib><creatorcontrib>Liang, Yanyan</creatorcontrib><creatorcontrib>Zhang, Du</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tianle</au><au>Liu, Zhen</au><au>Pu, Zhiqiang</au><au>Yi, Jianqiang</au><au>Liang, Yanyan</au><au>Zhang, Du</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>21</volume><issue>7</issue><spage>2350</spage><epage>2362</epage><pages>2350-2362</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatial-temporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-022-0171-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0779-5905</orcidid><orcidid>https://orcid.org/0000-0002-4841-4048</orcidid><orcidid>https://orcid.org/0000-0002-5780-8540</orcidid><orcidid>https://orcid.org/0000-0003-1610-2338</orcidid><orcidid>https://orcid.org/0000-0003-3268-9482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-6446
ispartof International journal of control, automation, and systems, 2023-07, Vol.21 (7), p.2350-2362
issn 1598-6446
2005-4092
language eng
recordid cdi_proquest_journals_2835969574
source SpringerLink Journals
subjects Barriers
Collision avoidance
Control
Deep learning
Engineering
Mechatronics
Navigation
Regular Papers
Robotics
Robots
title Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robot%20Subgoal-guided%20Navigation%20in%20Dynamic%20Crowded%20Environments%20with%20Hierarchical%20Deep%20Reinforcement%20Learning&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Zhang,%20Tianle&rft.date=2023-07-01&rft.volume=21&rft.issue=7&rft.spage=2350&rft.epage=2362&rft.pages=2350-2362&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-022-0171-z&rft_dat=%3Cproquest_cross%3E2835969574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835969574&rft_id=info:pmid/&rfr_iscdi=true