Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning
Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-ter...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems automation, and systems, 2023-07, Vol.21 (7), p.2350-2362 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2362 |
---|---|
container_issue | 7 |
container_start_page | 2350 |
container_title | International journal of control, automation, and systems |
container_volume | 21 |
creator | Zhang, Tianle Liu, Zhen Pu, Zhiqiang Yi, Jianqiang Liang, Yanyan Zhang, Du |
description | Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatial-temporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL. |
doi_str_mv | 10.1007/s12555-022-0171-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835969574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835969574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4faed0c0e03ea81492f4200866d22575336d300d6304b57c4033748b0e00c23b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3TyubtHaasVioIf55DNZtdIm9Rka6m_3i0VPHmawzzPO8yL0CWFawpQ3GTKpJQEGCNAC0q-j9CIAUgioGLHaERlVRIlhDpFZzl_ACjFqmKEVs-xjj1-2dRdNEvSbXzjGvxovnxneh8D9gFPd8GsvMWTFLf77Sx8-RTDyoU-463v3_Hcu2SSfffWLPHUuTV-dj60MVm3p_DCmRR86M7RSWuW2V38zjF6u5u9TuZk8XT_MLldEMtU2RPRGteABQfcmZKKirVieKZUqmFMFpJz1XCARnEQtSysAM4LUdaDAJbxmo_R1SF3neLnxuVef8RNCsNJzUouK1XJQgwUPVA2xZyTa_U6-ZVJO01B71vVh1b10Kret6q_B4cdnDywoXPpL_l_6Qd_9XrJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835969574</pqid></control><display><type>article</type><title>Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning</title><source>SpringerLink Journals</source><creator>Zhang, Tianle ; Liu, Zhen ; Pu, Zhiqiang ; Yi, Jianqiang ; Liang, Yanyan ; Zhang, Du</creator><creatorcontrib>Zhang, Tianle ; Liu, Zhen ; Pu, Zhiqiang ; Yi, Jianqiang ; Liang, Yanyan ; Zhang, Du</creatorcontrib><description>Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatial-temporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-022-0171-z</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Barriers ; Collision avoidance ; Control ; Deep learning ; Engineering ; Mechatronics ; Navigation ; Regular Papers ; Robotics ; Robots</subject><ispartof>International journal of control, automation, and systems, 2023-07, Vol.21 (7), p.2350-2362</ispartof><rights>ICROS, KIEE and Springer 2023</rights><rights>ICROS, KIEE and Springer 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4faed0c0e03ea81492f4200866d22575336d300d6304b57c4033748b0e00c23b3</cites><orcidid>0000-0002-0779-5905 ; 0000-0002-4841-4048 ; 0000-0002-5780-8540 ; 0000-0003-1610-2338 ; 0000-0003-3268-9482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12555-022-0171-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12555-022-0171-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Tianle</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Pu, Zhiqiang</creatorcontrib><creatorcontrib>Yi, Jianqiang</creatorcontrib><creatorcontrib>Liang, Yanyan</creatorcontrib><creatorcontrib>Zhang, Du</creatorcontrib><title>Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatial-temporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL.</description><subject>Barriers</subject><subject>Collision avoidance</subject><subject>Control</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Navigation</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Robots</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3TyubtHaasVioIf55DNZtdIm9Rka6m_3i0VPHmawzzPO8yL0CWFawpQ3GTKpJQEGCNAC0q-j9CIAUgioGLHaERlVRIlhDpFZzl_ACjFqmKEVs-xjj1-2dRdNEvSbXzjGvxovnxneh8D9gFPd8GsvMWTFLf77Sx8-RTDyoU-463v3_Hcu2SSfffWLPHUuTV-dj60MVm3p_DCmRR86M7RSWuW2V38zjF6u5u9TuZk8XT_MLldEMtU2RPRGteABQfcmZKKirVieKZUqmFMFpJz1XCARnEQtSysAM4LUdaDAJbxmo_R1SF3neLnxuVef8RNCsNJzUouK1XJQgwUPVA2xZyTa_U6-ZVJO01B71vVh1b10Kret6q_B4cdnDywoXPpL_l_6Qd_9XrJ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhang, Tianle</creator><creator>Liu, Zhen</creator><creator>Pu, Zhiqiang</creator><creator>Yi, Jianqiang</creator><creator>Liang, Yanyan</creator><creator>Zhang, Du</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0779-5905</orcidid><orcidid>https://orcid.org/0000-0002-4841-4048</orcidid><orcidid>https://orcid.org/0000-0002-5780-8540</orcidid><orcidid>https://orcid.org/0000-0003-1610-2338</orcidid><orcidid>https://orcid.org/0000-0003-3268-9482</orcidid></search><sort><creationdate>20230701</creationdate><title>Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning</title><author>Zhang, Tianle ; Liu, Zhen ; Pu, Zhiqiang ; Yi, Jianqiang ; Liang, Yanyan ; Zhang, Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4faed0c0e03ea81492f4200866d22575336d300d6304b57c4033748b0e00c23b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barriers</topic><topic>Collision avoidance</topic><topic>Control</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Navigation</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianle</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Pu, Zhiqiang</creatorcontrib><creatorcontrib>Yi, Jianqiang</creatorcontrib><creatorcontrib>Liang, Yanyan</creatorcontrib><creatorcontrib>Zhang, Du</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tianle</au><au>Liu, Zhen</au><au>Pu, Zhiqiang</au><au>Yi, Jianqiang</au><au>Liang, Yanyan</au><au>Zhang, Du</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>21</volume><issue>7</issue><spage>2350</spage><epage>2362</epage><pages>2350-2362</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatial-temporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-022-0171-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0779-5905</orcidid><orcidid>https://orcid.org/0000-0002-4841-4048</orcidid><orcidid>https://orcid.org/0000-0002-5780-8540</orcidid><orcidid>https://orcid.org/0000-0003-1610-2338</orcidid><orcidid>https://orcid.org/0000-0003-3268-9482</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-6446 |
ispartof | International journal of control, automation, and systems, 2023-07, Vol.21 (7), p.2350-2362 |
issn | 1598-6446 2005-4092 |
language | eng |
recordid | cdi_proquest_journals_2835969574 |
source | SpringerLink Journals |
subjects | Barriers Collision avoidance Control Deep learning Engineering Mechatronics Navigation Regular Papers Robotics Robots |
title | Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robot%20Subgoal-guided%20Navigation%20in%20Dynamic%20Crowded%20Environments%20with%20Hierarchical%20Deep%20Reinforcement%20Learning&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Zhang,%20Tianle&rft.date=2023-07-01&rft.volume=21&rft.issue=7&rft.spage=2350&rft.epage=2362&rft.pages=2350-2362&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-022-0171-z&rft_dat=%3Cproquest_cross%3E2835969574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835969574&rft_id=info:pmid/&rfr_iscdi=true |