An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments
In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clusteri...
Gespeichert in:
Veröffentlicht in: | Evolutionary intelligence 2023-08, Vol.16 (4), p.1237-1258 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1258 |
---|---|
container_issue | 4 |
container_start_page | 1237 |
container_title | Evolutionary intelligence |
container_volume | 16 |
creator | Azzouzi, Souad Hjouji, Amal EL-Mekkaoui, Jaouad EL Khalfi, Ahmed |
description | In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clustering centers and allows in addition to use Euclidean distance, the employment of other more powerful additional norms able to handle various complex situations. In this study, we applied ImKPFCM algorithm as a new image clustering method on the basis of Tchebychev orthogonal moments to extract feature vectors and then compared it with FCM, PFCM and GPFCM algorithms to evaluate its performance. The comparative study results applied to several image dataset, revealed that the ImKPFCM clustering algorithm improves the clustering accuracy over the FCM, PFCM and GPFCM methods. Therefore, we conclude that the ImKPFCM algorithm is more efficient and produces satisfactory image clustering results. |
doi_str_mv | 10.1007/s12065-022-00734-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835969203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835969203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3ca70a3e9d8cfb5c2b7b9bf1c8fa0a0a2089bd2643ba7d62a36f5645b74912e53</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxFr9A65IXKM8BhiWTeMrNnFT1wQYZtpmZqgwbdp_L3WM7sxNuBdyzgn3A-CW4HuCsXxIhGLBEaYU5Ssr0OEMTEgpCsQVkee_M1aX4CqlDcaCYllMgJ71cN1tY9j7Kg-m8dC1uzT4uO4baNomxPWw6qA1KQtCD9987H0LOz-sQgVNX8GlW3l7zMcehphfm9CbLAid74d0DS5q0yZ_89On4OPpcTl_QYv359f5bIEcI2pAzBmJDfOqKl1tuaNWWmVr4sra4FwUl8pWVBTMGlkJapiouSi4lYUi1HM2BXdjbl7lc-fToDdhF_NHkqYl40ooillW0VHlYkgp-lpvY146HjXB-gRSjyB1Bqm_QepDNrHRlLYnKD7-Rf_j-gJtMngf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835969203</pqid></control><display><type>article</type><title>An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments</title><source>SpringerLink Journals</source><creator>Azzouzi, Souad ; Hjouji, Amal ; EL-Mekkaoui, Jaouad ; EL Khalfi, Ahmed</creator><creatorcontrib>Azzouzi, Souad ; Hjouji, Amal ; EL-Mekkaoui, Jaouad ; EL Khalfi, Ahmed</creatorcontrib><description>In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clustering centers and allows in addition to use Euclidean distance, the employment of other more powerful additional norms able to handle various complex situations. In this study, we applied ImKPFCM algorithm as a new image clustering method on the basis of Tchebychev orthogonal moments to extract feature vectors and then compared it with FCM, PFCM and GPFCM algorithms to evaluate its performance. The comparative study results applied to several image dataset, revealed that the ImKPFCM clustering algorithm improves the clustering accuracy over the FCM, PFCM and GPFCM methods. Therefore, we conclude that the ImKPFCM algorithm is more efficient and produces satisfactory image clustering results.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-022-00734-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Clustering ; Comparative studies ; Control ; Engineering ; Euclidean geometry ; Kernels ; Mathematical and Computational Engineering ; Mechatronics ; Norms ; Research Paper ; Robotics ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2023-08, Vol.16 (4), p.1237-1258</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3ca70a3e9d8cfb5c2b7b9bf1c8fa0a0a2089bd2643ba7d62a36f5645b74912e53</citedby><cites>FETCH-LOGICAL-c319t-3ca70a3e9d8cfb5c2b7b9bf1c8fa0a0a2089bd2643ba7d62a36f5645b74912e53</cites><orcidid>0000-0002-4070-4964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-022-00734-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-022-00734-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Azzouzi, Souad</creatorcontrib><creatorcontrib>Hjouji, Amal</creatorcontrib><creatorcontrib>EL-Mekkaoui, Jaouad</creatorcontrib><creatorcontrib>EL Khalfi, Ahmed</creatorcontrib><title>An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clustering centers and allows in addition to use Euclidean distance, the employment of other more powerful additional norms able to handle various complex situations. In this study, we applied ImKPFCM algorithm as a new image clustering method on the basis of Tchebychev orthogonal moments to extract feature vectors and then compared it with FCM, PFCM and GPFCM algorithms to evaluate its performance. The comparative study results applied to several image dataset, revealed that the ImKPFCM clustering algorithm improves the clustering accuracy over the FCM, PFCM and GPFCM methods. Therefore, we conclude that the ImKPFCM algorithm is more efficient and produces satisfactory image clustering results.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Clustering</subject><subject>Comparative studies</subject><subject>Control</subject><subject>Engineering</subject><subject>Euclidean geometry</subject><subject>Kernels</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Norms</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEUhYnRxFr9A65IXKM8BhiWTeMrNnFT1wQYZtpmZqgwbdp_L3WM7sxNuBdyzgn3A-CW4HuCsXxIhGLBEaYU5Ssr0OEMTEgpCsQVkee_M1aX4CqlDcaCYllMgJ71cN1tY9j7Kg-m8dC1uzT4uO4baNomxPWw6qA1KQtCD9987H0LOz-sQgVNX8GlW3l7zMcehphfm9CbLAid74d0DS5q0yZ_89On4OPpcTl_QYv359f5bIEcI2pAzBmJDfOqKl1tuaNWWmVr4sra4FwUl8pWVBTMGlkJapiouSi4lYUi1HM2BXdjbl7lc-fToDdhF_NHkqYl40ooillW0VHlYkgp-lpvY146HjXB-gRSjyB1Bqm_QepDNrHRlLYnKD7-Rf_j-gJtMngf</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Azzouzi, Souad</creator><creator>Hjouji, Amal</creator><creator>EL-Mekkaoui, Jaouad</creator><creator>EL Khalfi, Ahmed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4070-4964</orcidid></search><sort><creationdate>20230801</creationdate><title>An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments</title><author>Azzouzi, Souad ; Hjouji, Amal ; EL-Mekkaoui, Jaouad ; EL Khalfi, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3ca70a3e9d8cfb5c2b7b9bf1c8fa0a0a2089bd2643ba7d62a36f5645b74912e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Clustering</topic><topic>Comparative studies</topic><topic>Control</topic><topic>Engineering</topic><topic>Euclidean geometry</topic><topic>Kernels</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Norms</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzouzi, Souad</creatorcontrib><creatorcontrib>Hjouji, Amal</creatorcontrib><creatorcontrib>EL-Mekkaoui, Jaouad</creatorcontrib><creatorcontrib>EL Khalfi, Ahmed</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzouzi, Souad</au><au>Hjouji, Amal</au><au>EL-Mekkaoui, Jaouad</au><au>EL Khalfi, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1237</spage><epage>1258</epage><pages>1237-1258</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clustering centers and allows in addition to use Euclidean distance, the employment of other more powerful additional norms able to handle various complex situations. In this study, we applied ImKPFCM algorithm as a new image clustering method on the basis of Tchebychev orthogonal moments to extract feature vectors and then compared it with FCM, PFCM and GPFCM algorithms to evaluate its performance. The comparative study results applied to several image dataset, revealed that the ImKPFCM clustering algorithm improves the clustering accuracy over the FCM, PFCM and GPFCM methods. Therefore, we conclude that the ImKPFCM algorithm is more efficient and produces satisfactory image clustering results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-022-00734-x</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4070-4964</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2023-08, Vol.16 (4), p.1237-1258 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_proquest_journals_2835969203 |
source | SpringerLink Journals |
subjects | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Clustering Comparative studies Control Engineering Euclidean geometry Kernels Mathematical and Computational Engineering Mechatronics Norms Research Paper Robotics Statistical Physics and Dynamical Systems |
title | An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20image%20clustering%20algorithm%20based%20on%20Kernel%20method%20and%20Tchebychev%20orthogonal%20moments&rft.jtitle=Evolutionary%20intelligence&rft.au=Azzouzi,%20Souad&rft.date=2023-08-01&rft.volume=16&rft.issue=4&rft.spage=1237&rft.epage=1258&rft.pages=1237-1258&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-022-00734-x&rft_dat=%3Cproquest_cross%3E2835969203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835969203&rft_id=info:pmid/&rfr_iscdi=true |