An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments

In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clusteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence 2023-08, Vol.16 (4), p.1237-1258
Hauptverfasser: Azzouzi, Souad, Hjouji, Amal, EL-Mekkaoui, Jaouad, EL Khalfi, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 4
container_start_page 1237
container_title Evolutionary intelligence
container_volume 16
creator Azzouzi, Souad
Hjouji, Amal
EL-Mekkaoui, Jaouad
EL Khalfi, Ahmed
description In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clustering centers and allows in addition to use Euclidean distance, the employment of other more powerful additional norms able to handle various complex situations. In this study, we applied ImKPFCM algorithm as a new image clustering method on the basis of Tchebychev orthogonal moments to extract feature vectors and then compared it with FCM, PFCM and GPFCM algorithms to evaluate its performance. The comparative study results applied to several image dataset, revealed that the ImKPFCM clustering algorithm improves the clustering accuracy over the FCM, PFCM and GPFCM methods. Therefore, we conclude that the ImKPFCM algorithm is more efficient and produces satisfactory image clustering results.
doi_str_mv 10.1007/s12065-022-00734-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835969203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835969203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3ca70a3e9d8cfb5c2b7b9bf1c8fa0a0a2089bd2643ba7d62a36f5645b74912e53</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxFr9A65IXKM8BhiWTeMrNnFT1wQYZtpmZqgwbdp_L3WM7sxNuBdyzgn3A-CW4HuCsXxIhGLBEaYU5Ssr0OEMTEgpCsQVkee_M1aX4CqlDcaCYllMgJ71cN1tY9j7Kg-m8dC1uzT4uO4baNomxPWw6qA1KQtCD9987H0LOz-sQgVNX8GlW3l7zMcehphfm9CbLAid74d0DS5q0yZ_89On4OPpcTl_QYv359f5bIEcI2pAzBmJDfOqKl1tuaNWWmVr4sra4FwUl8pWVBTMGlkJapiouSi4lYUi1HM2BXdjbl7lc-fToDdhF_NHkqYl40ooillW0VHlYkgp-lpvY146HjXB-gRSjyB1Bqm_QepDNrHRlLYnKD7-Rf_j-gJtMngf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835969203</pqid></control><display><type>article</type><title>An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments</title><source>SpringerLink Journals</source><creator>Azzouzi, Souad ; Hjouji, Amal ; EL-Mekkaoui, Jaouad ; EL Khalfi, Ahmed</creator><creatorcontrib>Azzouzi, Souad ; Hjouji, Amal ; EL-Mekkaoui, Jaouad ; EL Khalfi, Ahmed</creatorcontrib><description>In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clustering centers and allows in addition to use Euclidean distance, the employment of other more powerful additional norms able to handle various complex situations. In this study, we applied ImKPFCM algorithm as a new image clustering method on the basis of Tchebychev orthogonal moments to extract feature vectors and then compared it with FCM, PFCM and GPFCM algorithms to evaluate its performance. The comparative study results applied to several image dataset, revealed that the ImKPFCM clustering algorithm improves the clustering accuracy over the FCM, PFCM and GPFCM methods. Therefore, we conclude that the ImKPFCM algorithm is more efficient and produces satisfactory image clustering results.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-022-00734-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Clustering ; Comparative studies ; Control ; Engineering ; Euclidean geometry ; Kernels ; Mathematical and Computational Engineering ; Mechatronics ; Norms ; Research Paper ; Robotics ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2023-08, Vol.16 (4), p.1237-1258</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3ca70a3e9d8cfb5c2b7b9bf1c8fa0a0a2089bd2643ba7d62a36f5645b74912e53</citedby><cites>FETCH-LOGICAL-c319t-3ca70a3e9d8cfb5c2b7b9bf1c8fa0a0a2089bd2643ba7d62a36f5645b74912e53</cites><orcidid>0000-0002-4070-4964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-022-00734-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-022-00734-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Azzouzi, Souad</creatorcontrib><creatorcontrib>Hjouji, Amal</creatorcontrib><creatorcontrib>EL-Mekkaoui, Jaouad</creatorcontrib><creatorcontrib>EL Khalfi, Ahmed</creatorcontrib><title>An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clustering centers and allows in addition to use Euclidean distance, the employment of other more powerful additional norms able to handle various complex situations. In this study, we applied ImKPFCM algorithm as a new image clustering method on the basis of Tchebychev orthogonal moments to extract feature vectors and then compared it with FCM, PFCM and GPFCM algorithms to evaluate its performance. The comparative study results applied to several image dataset, revealed that the ImKPFCM clustering algorithm improves the clustering accuracy over the FCM, PFCM and GPFCM methods. Therefore, we conclude that the ImKPFCM algorithm is more efficient and produces satisfactory image clustering results.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Clustering</subject><subject>Comparative studies</subject><subject>Control</subject><subject>Engineering</subject><subject>Euclidean geometry</subject><subject>Kernels</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Norms</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEUhYnRxFr9A65IXKM8BhiWTeMrNnFT1wQYZtpmZqgwbdp_L3WM7sxNuBdyzgn3A-CW4HuCsXxIhGLBEaYU5Ssr0OEMTEgpCsQVkee_M1aX4CqlDcaCYllMgJ71cN1tY9j7Kg-m8dC1uzT4uO4baNomxPWw6qA1KQtCD9987H0LOz-sQgVNX8GlW3l7zMcehphfm9CbLAid74d0DS5q0yZ_89On4OPpcTl_QYv359f5bIEcI2pAzBmJDfOqKl1tuaNWWmVr4sra4FwUl8pWVBTMGlkJapiouSi4lYUi1HM2BXdjbl7lc-fToDdhF_NHkqYl40ooillW0VHlYkgp-lpvY146HjXB-gRSjyB1Bqm_QepDNrHRlLYnKD7-Rf_j-gJtMngf</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Azzouzi, Souad</creator><creator>Hjouji, Amal</creator><creator>EL-Mekkaoui, Jaouad</creator><creator>EL Khalfi, Ahmed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4070-4964</orcidid></search><sort><creationdate>20230801</creationdate><title>An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments</title><author>Azzouzi, Souad ; Hjouji, Amal ; EL-Mekkaoui, Jaouad ; EL Khalfi, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3ca70a3e9d8cfb5c2b7b9bf1c8fa0a0a2089bd2643ba7d62a36f5645b74912e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Clustering</topic><topic>Comparative studies</topic><topic>Control</topic><topic>Engineering</topic><topic>Euclidean geometry</topic><topic>Kernels</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Norms</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzouzi, Souad</creatorcontrib><creatorcontrib>Hjouji, Amal</creatorcontrib><creatorcontrib>EL-Mekkaoui, Jaouad</creatorcontrib><creatorcontrib>EL Khalfi, Ahmed</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzouzi, Souad</au><au>Hjouji, Amal</au><au>EL-Mekkaoui, Jaouad</au><au>EL Khalfi, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1237</spage><epage>1258</epage><pages>1237-1258</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>In this paper, we introduce a new clustering algorithm called Improved Kernel Possibilistic Fuzzy C-Means algorithm (ImKPFCM), based on the kernel method and possibilistic approach. The proposed ImKPFCM algorithm corrects several FCM, PFCM and GPFCM algorithms shortcomings, reliably detects clustering centers and allows in addition to use Euclidean distance, the employment of other more powerful additional norms able to handle various complex situations. In this study, we applied ImKPFCM algorithm as a new image clustering method on the basis of Tchebychev orthogonal moments to extract feature vectors and then compared it with FCM, PFCM and GPFCM algorithms to evaluate its performance. The comparative study results applied to several image dataset, revealed that the ImKPFCM clustering algorithm improves the clustering accuracy over the FCM, PFCM and GPFCM methods. Therefore, we conclude that the ImKPFCM algorithm is more efficient and produces satisfactory image clustering results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-022-00734-x</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4070-4964</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2023-08, Vol.16 (4), p.1237-1258
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2835969203
source SpringerLink Journals
subjects Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Clustering
Comparative studies
Control
Engineering
Euclidean geometry
Kernels
Mathematical and Computational Engineering
Mechatronics
Norms
Research Paper
Robotics
Statistical Physics and Dynamical Systems
title An improved image clustering algorithm based on Kernel method and Tchebychev orthogonal moments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20image%20clustering%20algorithm%20based%20on%20Kernel%20method%20and%20Tchebychev%20orthogonal%20moments&rft.jtitle=Evolutionary%20intelligence&rft.au=Azzouzi,%20Souad&rft.date=2023-08-01&rft.volume=16&rft.issue=4&rft.spage=1237&rft.epage=1258&rft.pages=1237-1258&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-022-00734-x&rft_dat=%3Cproquest_cross%3E2835969203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835969203&rft_id=info:pmid/&rfr_iscdi=true