Computational Reproducibility via Containers in Psychology

Scientific progress relies on the replication and reuse of research. Recent studies suggest, however, that sharing code and data does not suffice for computational reproducibility —defined as the ability of researchers to reproduce “par- ticular analysis outcomes from the same data set using the sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meta-Psychology (Växjö) 2019-11, Vol.3
Hauptverfasser: Clyburne-Sherin, April, Fei, Xu, Green, Seth Ariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Meta-Psychology (Växjö)
container_volume 3
creator Clyburne-Sherin, April
Fei, Xu
Green, Seth Ariel
description Scientific progress relies on the replication and reuse of research. Recent studies suggest, however, that sharing code and data does not suffice for computational reproducibility —defined as the ability of researchers to reproduce “par- ticular analysis outcomes from the same data set using the same code and software” (Fidler and Wilcox, 2018). To date, creating long-term computationally reproducible code has been technically challenging and time-consuming. This tutorial introduces Code Ocean, a cloud-based computational reproducibility platform that attempts to solve these problems. It does this by adapting software engineering tools, such as Docker, for easier use by scientists and scientific audiences. In this article, we first outline arguments for the importance of computational reproducibility, as well as some reasons why this is a nontrivial problem for researchers. We then provide a step-by-step guide to getting started with containers in research using Code Ocean. (Disclaimer: the authors all worked for Code Ocean at the time of this article’s writing.)
doi_str_mv 10.15626/MP.2018.892
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835814550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835814550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2170-983d449dd87614d5ee4824a0263e17442e05659c0b4ef2771c6119bbfed406693</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsNTu_AEBt6a-N5nMhzsJWoUWi-h6mCQTnZJm6kwi5N8brQtX9y4ul8Mh5BJhiTmn_GazXVJAuZSKnpAZBchSKpCd_uvnZBHjDgCoFFQhzsht4feHoTe9851pkxd7CL4eKle61vVj8uVMUviuN66zISauS7ZxrD5869_HC3LWmDbaxV_OydvD_WvxmK6fV0_F3TqtKApIlcxqxlRdS8GR1bm1TFJmgPLMomCMWsh5rioomW2oEFhxRFWWja0ZcK6yObk6_k5on4ONvd75IUy0UVOZ5RJZnsO0uj6uquBjDLbRh-D2JowaQf8K0put_hGkJ0HZN20sVmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835814550</pqid></control><display><type>article</type><title>Computational Reproducibility via Containers in Psychology</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Clyburne-Sherin, April ; Fei, Xu ; Green, Seth Ariel</creator><creatorcontrib>Clyburne-Sherin, April ; Fei, Xu ; Green, Seth Ariel</creatorcontrib><description>Scientific progress relies on the replication and reuse of research. Recent studies suggest, however, that sharing code and data does not suffice for computational reproducibility —defined as the ability of researchers to reproduce “par- ticular analysis outcomes from the same data set using the same code and software” (Fidler and Wilcox, 2018). To date, creating long-term computationally reproducible code has been technically challenging and time-consuming. This tutorial introduces Code Ocean, a cloud-based computational reproducibility platform that attempts to solve these problems. It does this by adapting software engineering tools, such as Docker, for easier use by scientists and scientific audiences. In this article, we first outline arguments for the importance of computational reproducibility, as well as some reasons why this is a nontrivial problem for researchers. We then provide a step-by-step guide to getting started with containers in research using Code Ocean. (Disclaimer: the authors all worked for Code Ocean at the time of this article’s writing.)</description><identifier>ISSN: 2003-2714</identifier><identifier>EISSN: 2003-2714</identifier><identifier>DOI: 10.15626/MP.2018.892</identifier><language>eng</language><publisher>Växjö</publisher><subject>Reproducibility ; Software</subject><ispartof>Meta-Psychology (Växjö), 2019-11, Vol.3</ispartof><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2170-983d449dd87614d5ee4824a0263e17442e05659c0b4ef2771c6119bbfed406693</citedby><cites>FETCH-LOGICAL-c2170-983d449dd87614d5ee4824a0263e17442e05659c0b4ef2771c6119bbfed406693</cites><orcidid>0000-0002-5401-7751 ; 0000-0003-3909-1969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2835814550?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,21397,27933,27934,33753,43814,64394,64398,72478</link.rule.ids></links><search><creatorcontrib>Clyburne-Sherin, April</creatorcontrib><creatorcontrib>Fei, Xu</creatorcontrib><creatorcontrib>Green, Seth Ariel</creatorcontrib><title>Computational Reproducibility via Containers in Psychology</title><title>Meta-Psychology (Växjö)</title><description>Scientific progress relies on the replication and reuse of research. Recent studies suggest, however, that sharing code and data does not suffice for computational reproducibility —defined as the ability of researchers to reproduce “par- ticular analysis outcomes from the same data set using the same code and software” (Fidler and Wilcox, 2018). To date, creating long-term computationally reproducible code has been technically challenging and time-consuming. This tutorial introduces Code Ocean, a cloud-based computational reproducibility platform that attempts to solve these problems. It does this by adapting software engineering tools, such as Docker, for easier use by scientists and scientific audiences. In this article, we first outline arguments for the importance of computational reproducibility, as well as some reasons why this is a nontrivial problem for researchers. We then provide a step-by-step guide to getting started with containers in research using Code Ocean. (Disclaimer: the authors all worked for Code Ocean at the time of this article’s writing.)</description><subject>Reproducibility</subject><subject>Software</subject><issn>2003-2714</issn><issn>2003-2714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE1Lw0AURQdRsNTu_AEBt6a-N5nMhzsJWoUWi-h6mCQTnZJm6kwi5N8brQtX9y4ul8Mh5BJhiTmn_GazXVJAuZSKnpAZBchSKpCd_uvnZBHjDgCoFFQhzsht4feHoTe9851pkxd7CL4eKle61vVj8uVMUviuN66zISauS7ZxrD5869_HC3LWmDbaxV_OydvD_WvxmK6fV0_F3TqtKApIlcxqxlRdS8GR1bm1TFJmgPLMomCMWsh5rioomW2oEFhxRFWWja0ZcK6yObk6_k5on4ONvd75IUy0UVOZ5RJZnsO0uj6uquBjDLbRh-D2JowaQf8K0put_hGkJ0HZN20sVmU</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Clyburne-Sherin, April</creator><creator>Fei, Xu</creator><creator>Green, Seth Ariel</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0002-5401-7751</orcidid><orcidid>https://orcid.org/0000-0003-3909-1969</orcidid></search><sort><creationdate>20191112</creationdate><title>Computational Reproducibility via Containers in Psychology</title><author>Clyburne-Sherin, April ; Fei, Xu ; Green, Seth Ariel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2170-983d449dd87614d5ee4824a0263e17442e05659c0b4ef2771c6119bbfed406693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Reproducibility</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clyburne-Sherin, April</creatorcontrib><creatorcontrib>Fei, Xu</creatorcontrib><creatorcontrib>Green, Seth Ariel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><jtitle>Meta-Psychology (Växjö)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clyburne-Sherin, April</au><au>Fei, Xu</au><au>Green, Seth Ariel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Reproducibility via Containers in Psychology</atitle><jtitle>Meta-Psychology (Växjö)</jtitle><date>2019-11-12</date><risdate>2019</risdate><volume>3</volume><issn>2003-2714</issn><eissn>2003-2714</eissn><abstract>Scientific progress relies on the replication and reuse of research. Recent studies suggest, however, that sharing code and data does not suffice for computational reproducibility —defined as the ability of researchers to reproduce “par- ticular analysis outcomes from the same data set using the same code and software” (Fidler and Wilcox, 2018). To date, creating long-term computationally reproducible code has been technically challenging and time-consuming. This tutorial introduces Code Ocean, a cloud-based computational reproducibility platform that attempts to solve these problems. It does this by adapting software engineering tools, such as Docker, for easier use by scientists and scientific audiences. In this article, we first outline arguments for the importance of computational reproducibility, as well as some reasons why this is a nontrivial problem for researchers. We then provide a step-by-step guide to getting started with containers in research using Code Ocean. (Disclaimer: the authors all worked for Code Ocean at the time of this article’s writing.)</abstract><cop>Växjö</cop><doi>10.15626/MP.2018.892</doi><orcidid>https://orcid.org/0000-0002-5401-7751</orcidid><orcidid>https://orcid.org/0000-0003-3909-1969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2003-2714
ispartof Meta-Psychology (Växjö), 2019-11, Vol.3
issn 2003-2714
2003-2714
language eng
recordid cdi_proquest_journals_2835814550
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Reproducibility
Software
title Computational Reproducibility via Containers in Psychology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T12%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Reproducibility%20via%20Containers%20in%20Psychology&rft.jtitle=Meta-Psychology%20(V%C3%A4xj%C3%B6)&rft.au=Clyburne-Sherin,%20April&rft.date=2019-11-12&rft.volume=3&rft.issn=2003-2714&rft.eissn=2003-2714&rft_id=info:doi/10.15626/MP.2018.892&rft_dat=%3Cproquest_cross%3E2835814550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835814550&rft_id=info:pmid/&rfr_iscdi=true