Predicting energy consumption of grinding mills in mining industry : A review
Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining eq...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2814 |
creator | Loudari, Chaimae Cherkaoui, Moha Bennani, Rachid Harraki, Imad El Younsi, Zakaria El Adnani, Mohamed El Abdelwahed, El Hassan Benzakour, Intissar Bourzeix, François Baina, Karim |
description | Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining equipment. The energy-intensive equipment in the mining industry is the grinding mills. Due to the complexity and difficulty of modeling the grinding mills, data-driven modeling solves these challenges by predicting and optimizing energy consumption through the development of machine learning models. In this article, a literature review on the application of artificial intelligence models to predict the energy consumption of grinding mills has been conducted. This research study presents a description of the energy prediction system, from the data acquisition to the prediction results. It provides a comparison description of the parameters of available datasets and a classification of their machine learning and deep learning models applied to predict energy consumption or power of mining grinding mills. Furthermore, it identifies the performance parameters of each research study. Then, the research study will be concluded with a recommendation and the main area for future research. |
doi_str_mv | 10.1063/5.0148768 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2835642386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835642386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-d1c068c100bf0bc1a29722b93bef74eecd582e43cbbf1bc5ef6312cb55b0284e3</originalsourceid><addsrcrecordid>eNotUE1LAzEQDaJgrR78BwFvwtZMvjb1VopfUNGDgrewyc6WlDZbk12l_95d6mnezDzmvXmEXAObAdPiTs0YSFNqc0ImoBQUpQZ9SiaMzWXBpfg6Jxc5bxjj87I0E_L6nrAOvgtxTTFiWh-ob2Pud_sutJG2DV2nEOtxvQvbbaYhDiCO_TDuc5cO9J4uaMKfgL-X5Kypthmv_uuUfD4-fCyfi9Xb08tysSo8lKIravBMGw-MuYY5D9VghnM3Fw6bUiL6WhmOUnjnGnBeYaMFcO-UcowbiWJKbo5396n97jF3dtP2KQ6SlhuhtOTC6IF1e2RlH7pq_MfuU9hV6WCB2TEuq-x_XOIPmv5c_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2835642386</pqid></control><display><type>conference_proceeding</type><title>Predicting energy consumption of grinding mills in mining industry : A review</title><source>AIP Journals</source><creator>Loudari, Chaimae ; Cherkaoui, Moha ; Bennani, Rachid ; Harraki, Imad El ; Younsi, Zakaria El ; Adnani, Mohamed El ; Abdelwahed, El Hassan ; Benzakour, Intissar ; Bourzeix, François ; Baina, Karim</creator><contributor>Boulouard, Zakaria ; Ouaissa, Mariya ; Ouaissa, Mariyam ; Iwendi, Celestine ; Himer, Sarah El ; Mellouli, El Mehdi ; Khan, Inam Ullah</contributor><creatorcontrib>Loudari, Chaimae ; Cherkaoui, Moha ; Bennani, Rachid ; Harraki, Imad El ; Younsi, Zakaria El ; Adnani, Mohamed El ; Abdelwahed, El Hassan ; Benzakour, Intissar ; Bourzeix, François ; Baina, Karim ; Boulouard, Zakaria ; Ouaissa, Mariya ; Ouaissa, Mariyam ; Iwendi, Celestine ; Himer, Sarah El ; Mellouli, El Mehdi ; Khan, Inam Ullah</creatorcontrib><description>Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining equipment. The energy-intensive equipment in the mining industry is the grinding mills. Due to the complexity and difficulty of modeling the grinding mills, data-driven modeling solves these challenges by predicting and optimizing energy consumption through the development of machine learning models. In this article, a literature review on the application of artificial intelligence models to predict the energy consumption of grinding mills has been conducted. This research study presents a description of the energy prediction system, from the data acquisition to the prediction results. It provides a comparison description of the parameters of available datasets and a classification of their machine learning and deep learning models applied to predict energy consumption or power of mining grinding mills. Furthermore, it identifies the performance parameters of each research study. Then, the research study will be concluded with a recommendation and the main area for future research.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0148768</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Complexity ; Data acquisition ; Deep learning ; Energy consumption ; Grinding mills ; Literature reviews ; Machine learning ; Mathematical models ; Mining industry ; Mining machinery ; Modelling ; Optimization ; Parameter identification ; Power consumption</subject><ispartof>AIP conference proceedings, 2023, Vol.2814 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-d1c068c100bf0bc1a29722b93bef74eecd582e43cbbf1bc5ef6312cb55b0284e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0148768$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Boulouard, Zakaria</contributor><contributor>Ouaissa, Mariya</contributor><contributor>Ouaissa, Mariyam</contributor><contributor>Iwendi, Celestine</contributor><contributor>Himer, Sarah El</contributor><contributor>Mellouli, El Mehdi</contributor><contributor>Khan, Inam Ullah</contributor><creatorcontrib>Loudari, Chaimae</creatorcontrib><creatorcontrib>Cherkaoui, Moha</creatorcontrib><creatorcontrib>Bennani, Rachid</creatorcontrib><creatorcontrib>Harraki, Imad El</creatorcontrib><creatorcontrib>Younsi, Zakaria El</creatorcontrib><creatorcontrib>Adnani, Mohamed El</creatorcontrib><creatorcontrib>Abdelwahed, El Hassan</creatorcontrib><creatorcontrib>Benzakour, Intissar</creatorcontrib><creatorcontrib>Bourzeix, François</creatorcontrib><creatorcontrib>Baina, Karim</creatorcontrib><title>Predicting energy consumption of grinding mills in mining industry : A review</title><title>AIP conference proceedings</title><description>Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining equipment. The energy-intensive equipment in the mining industry is the grinding mills. Due to the complexity and difficulty of modeling the grinding mills, data-driven modeling solves these challenges by predicting and optimizing energy consumption through the development of machine learning models. In this article, a literature review on the application of artificial intelligence models to predict the energy consumption of grinding mills has been conducted. This research study presents a description of the energy prediction system, from the data acquisition to the prediction results. It provides a comparison description of the parameters of available datasets and a classification of their machine learning and deep learning models applied to predict energy consumption or power of mining grinding mills. Furthermore, it identifies the performance parameters of each research study. Then, the research study will be concluded with a recommendation and the main area for future research.</description><subject>Artificial intelligence</subject><subject>Complexity</subject><subject>Data acquisition</subject><subject>Deep learning</subject><subject>Energy consumption</subject><subject>Grinding mills</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mining industry</subject><subject>Mining machinery</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Power consumption</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUE1LAzEQDaJgrR78BwFvwtZMvjb1VopfUNGDgrewyc6WlDZbk12l_95d6mnezDzmvXmEXAObAdPiTs0YSFNqc0ImoBQUpQZ9SiaMzWXBpfg6Jxc5bxjj87I0E_L6nrAOvgtxTTFiWh-ob2Pud_sutJG2DV2nEOtxvQvbbaYhDiCO_TDuc5cO9J4uaMKfgL-X5Kypthmv_uuUfD4-fCyfi9Xb08tysSo8lKIravBMGw-MuYY5D9VghnM3Fw6bUiL6WhmOUnjnGnBeYaMFcO-UcowbiWJKbo5396n97jF3dtP2KQ6SlhuhtOTC6IF1e2RlH7pq_MfuU9hV6WCB2TEuq-x_XOIPmv5c_A</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Loudari, Chaimae</creator><creator>Cherkaoui, Moha</creator><creator>Bennani, Rachid</creator><creator>Harraki, Imad El</creator><creator>Younsi, Zakaria El</creator><creator>Adnani, Mohamed El</creator><creator>Abdelwahed, El Hassan</creator><creator>Benzakour, Intissar</creator><creator>Bourzeix, François</creator><creator>Baina, Karim</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230711</creationdate><title>Predicting energy consumption of grinding mills in mining industry : A review</title><author>Loudari, Chaimae ; Cherkaoui, Moha ; Bennani, Rachid ; Harraki, Imad El ; Younsi, Zakaria El ; Adnani, Mohamed El ; Abdelwahed, El Hassan ; Benzakour, Intissar ; Bourzeix, François ; Baina, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-d1c068c100bf0bc1a29722b93bef74eecd582e43cbbf1bc5ef6312cb55b0284e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Complexity</topic><topic>Data acquisition</topic><topic>Deep learning</topic><topic>Energy consumption</topic><topic>Grinding mills</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mining industry</topic><topic>Mining machinery</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Power consumption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loudari, Chaimae</creatorcontrib><creatorcontrib>Cherkaoui, Moha</creatorcontrib><creatorcontrib>Bennani, Rachid</creatorcontrib><creatorcontrib>Harraki, Imad El</creatorcontrib><creatorcontrib>Younsi, Zakaria El</creatorcontrib><creatorcontrib>Adnani, Mohamed El</creatorcontrib><creatorcontrib>Abdelwahed, El Hassan</creatorcontrib><creatorcontrib>Benzakour, Intissar</creatorcontrib><creatorcontrib>Bourzeix, François</creatorcontrib><creatorcontrib>Baina, Karim</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loudari, Chaimae</au><au>Cherkaoui, Moha</au><au>Bennani, Rachid</au><au>Harraki, Imad El</au><au>Younsi, Zakaria El</au><au>Adnani, Mohamed El</au><au>Abdelwahed, El Hassan</au><au>Benzakour, Intissar</au><au>Bourzeix, François</au><au>Baina, Karim</au><au>Boulouard, Zakaria</au><au>Ouaissa, Mariya</au><au>Ouaissa, Mariyam</au><au>Iwendi, Celestine</au><au>Himer, Sarah El</au><au>Mellouli, El Mehdi</au><au>Khan, Inam Ullah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting energy consumption of grinding mills in mining industry : A review</atitle><btitle>AIP conference proceedings</btitle><date>2023-07-11</date><risdate>2023</risdate><volume>2814</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining equipment. The energy-intensive equipment in the mining industry is the grinding mills. Due to the complexity and difficulty of modeling the grinding mills, data-driven modeling solves these challenges by predicting and optimizing energy consumption through the development of machine learning models. In this article, a literature review on the application of artificial intelligence models to predict the energy consumption of grinding mills has been conducted. This research study presents a description of the energy prediction system, from the data acquisition to the prediction results. It provides a comparison description of the parameters of available datasets and a classification of their machine learning and deep learning models applied to predict energy consumption or power of mining grinding mills. Furthermore, it identifies the performance parameters of each research study. Then, the research study will be concluded with a recommendation and the main area for future research.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0148768</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2814 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2835642386 |
source | AIP Journals |
subjects | Artificial intelligence Complexity Data acquisition Deep learning Energy consumption Grinding mills Literature reviews Machine learning Mathematical models Mining industry Mining machinery Modelling Optimization Parameter identification Power consumption |
title | Predicting energy consumption of grinding mills in mining industry : A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20energy%20consumption%20of%20grinding%20mills%20in%20mining%20industry%20:%20A%20review&rft.btitle=AIP%20conference%20proceedings&rft.au=Loudari,%20Chaimae&rft.date=2023-07-11&rft.volume=2814&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0148768&rft_dat=%3Cproquest_scita%3E2835642386%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835642386&rft_id=info:pmid/&rfr_iscdi=true |