Predicting energy consumption of grinding mills in mining industry : A review

Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Loudari, Chaimae, Cherkaoui, Moha, Bennani, Rachid, Harraki, Imad El, Younsi, Zakaria El, Adnani, Mohamed El, Abdelwahed, El Hassan, Benzakour, Intissar, Bourzeix, François, Baina, Karim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2814
creator Loudari, Chaimae
Cherkaoui, Moha
Bennani, Rachid
Harraki, Imad El
Younsi, Zakaria El
Adnani, Mohamed El
Abdelwahed, El Hassan
Benzakour, Intissar
Bourzeix, François
Baina, Karim
description Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining equipment. The energy-intensive equipment in the mining industry is the grinding mills. Due to the complexity and difficulty of modeling the grinding mills, data-driven modeling solves these challenges by predicting and optimizing energy consumption through the development of machine learning models. In this article, a literature review on the application of artificial intelligence models to predict the energy consumption of grinding mills has been conducted. This research study presents a description of the energy prediction system, from the data acquisition to the prediction results. It provides a comparison description of the parameters of available datasets and a classification of their machine learning and deep learning models applied to predict energy consumption or power of mining grinding mills. Furthermore, it identifies the performance parameters of each research study. Then, the research study will be concluded with a recommendation and the main area for future research.
doi_str_mv 10.1063/5.0148768
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2835642386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835642386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-d1c068c100bf0bc1a29722b93bef74eecd582e43cbbf1bc5ef6312cb55b0284e3</originalsourceid><addsrcrecordid>eNotUE1LAzEQDaJgrR78BwFvwtZMvjb1VopfUNGDgrewyc6WlDZbk12l_95d6mnezDzmvXmEXAObAdPiTs0YSFNqc0ImoBQUpQZ9SiaMzWXBpfg6Jxc5bxjj87I0E_L6nrAOvgtxTTFiWh-ob2Pud_sutJG2DV2nEOtxvQvbbaYhDiCO_TDuc5cO9J4uaMKfgL-X5Kypthmv_uuUfD4-fCyfi9Xb08tysSo8lKIravBMGw-MuYY5D9VghnM3Fw6bUiL6WhmOUnjnGnBeYaMFcO-UcowbiWJKbo5396n97jF3dtP2KQ6SlhuhtOTC6IF1e2RlH7pq_MfuU9hV6WCB2TEuq-x_XOIPmv5c_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2835642386</pqid></control><display><type>conference_proceeding</type><title>Predicting energy consumption of grinding mills in mining industry : A review</title><source>AIP Journals</source><creator>Loudari, Chaimae ; Cherkaoui, Moha ; Bennani, Rachid ; Harraki, Imad El ; Younsi, Zakaria El ; Adnani, Mohamed El ; Abdelwahed, El Hassan ; Benzakour, Intissar ; Bourzeix, François ; Baina, Karim</creator><contributor>Boulouard, Zakaria ; Ouaissa, Mariya ; Ouaissa, Mariyam ; Iwendi, Celestine ; Himer, Sarah El ; Mellouli, El Mehdi ; Khan, Inam Ullah</contributor><creatorcontrib>Loudari, Chaimae ; Cherkaoui, Moha ; Bennani, Rachid ; Harraki, Imad El ; Younsi, Zakaria El ; Adnani, Mohamed El ; Abdelwahed, El Hassan ; Benzakour, Intissar ; Bourzeix, François ; Baina, Karim ; Boulouard, Zakaria ; Ouaissa, Mariya ; Ouaissa, Mariyam ; Iwendi, Celestine ; Himer, Sarah El ; Mellouli, El Mehdi ; Khan, Inam Ullah</creatorcontrib><description>Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining equipment. The energy-intensive equipment in the mining industry is the grinding mills. Due to the complexity and difficulty of modeling the grinding mills, data-driven modeling solves these challenges by predicting and optimizing energy consumption through the development of machine learning models. In this article, a literature review on the application of artificial intelligence models to predict the energy consumption of grinding mills has been conducted. This research study presents a description of the energy prediction system, from the data acquisition to the prediction results. It provides a comparison description of the parameters of available datasets and a classification of their machine learning and deep learning models applied to predict energy consumption or power of mining grinding mills. Furthermore, it identifies the performance parameters of each research study. Then, the research study will be concluded with a recommendation and the main area for future research.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0148768</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Complexity ; Data acquisition ; Deep learning ; Energy consumption ; Grinding mills ; Literature reviews ; Machine learning ; Mathematical models ; Mining industry ; Mining machinery ; Modelling ; Optimization ; Parameter identification ; Power consumption</subject><ispartof>AIP conference proceedings, 2023, Vol.2814 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-d1c068c100bf0bc1a29722b93bef74eecd582e43cbbf1bc5ef6312cb55b0284e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0148768$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Boulouard, Zakaria</contributor><contributor>Ouaissa, Mariya</contributor><contributor>Ouaissa, Mariyam</contributor><contributor>Iwendi, Celestine</contributor><contributor>Himer, Sarah El</contributor><contributor>Mellouli, El Mehdi</contributor><contributor>Khan, Inam Ullah</contributor><creatorcontrib>Loudari, Chaimae</creatorcontrib><creatorcontrib>Cherkaoui, Moha</creatorcontrib><creatorcontrib>Bennani, Rachid</creatorcontrib><creatorcontrib>Harraki, Imad El</creatorcontrib><creatorcontrib>Younsi, Zakaria El</creatorcontrib><creatorcontrib>Adnani, Mohamed El</creatorcontrib><creatorcontrib>Abdelwahed, El Hassan</creatorcontrib><creatorcontrib>Benzakour, Intissar</creatorcontrib><creatorcontrib>Bourzeix, François</creatorcontrib><creatorcontrib>Baina, Karim</creatorcontrib><title>Predicting energy consumption of grinding mills in mining industry : A review</title><title>AIP conference proceedings</title><description>Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining equipment. The energy-intensive equipment in the mining industry is the grinding mills. Due to the complexity and difficulty of modeling the grinding mills, data-driven modeling solves these challenges by predicting and optimizing energy consumption through the development of machine learning models. In this article, a literature review on the application of artificial intelligence models to predict the energy consumption of grinding mills has been conducted. This research study presents a description of the energy prediction system, from the data acquisition to the prediction results. It provides a comparison description of the parameters of available datasets and a classification of their machine learning and deep learning models applied to predict energy consumption or power of mining grinding mills. Furthermore, it identifies the performance parameters of each research study. Then, the research study will be concluded with a recommendation and the main area for future research.</description><subject>Artificial intelligence</subject><subject>Complexity</subject><subject>Data acquisition</subject><subject>Deep learning</subject><subject>Energy consumption</subject><subject>Grinding mills</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mining industry</subject><subject>Mining machinery</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Power consumption</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUE1LAzEQDaJgrR78BwFvwtZMvjb1VopfUNGDgrewyc6WlDZbk12l_95d6mnezDzmvXmEXAObAdPiTs0YSFNqc0ImoBQUpQZ9SiaMzWXBpfg6Jxc5bxjj87I0E_L6nrAOvgtxTTFiWh-ob2Pud_sutJG2DV2nEOtxvQvbbaYhDiCO_TDuc5cO9J4uaMKfgL-X5Kypthmv_uuUfD4-fCyfi9Xb08tysSo8lKIravBMGw-MuYY5D9VghnM3Fw6bUiL6WhmOUnjnGnBeYaMFcO-UcowbiWJKbo5396n97jF3dtP2KQ6SlhuhtOTC6IF1e2RlH7pq_MfuU9hV6WCB2TEuq-x_XOIPmv5c_A</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Loudari, Chaimae</creator><creator>Cherkaoui, Moha</creator><creator>Bennani, Rachid</creator><creator>Harraki, Imad El</creator><creator>Younsi, Zakaria El</creator><creator>Adnani, Mohamed El</creator><creator>Abdelwahed, El Hassan</creator><creator>Benzakour, Intissar</creator><creator>Bourzeix, François</creator><creator>Baina, Karim</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230711</creationdate><title>Predicting energy consumption of grinding mills in mining industry : A review</title><author>Loudari, Chaimae ; Cherkaoui, Moha ; Bennani, Rachid ; Harraki, Imad El ; Younsi, Zakaria El ; Adnani, Mohamed El ; Abdelwahed, El Hassan ; Benzakour, Intissar ; Bourzeix, François ; Baina, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-d1c068c100bf0bc1a29722b93bef74eecd582e43cbbf1bc5ef6312cb55b0284e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Complexity</topic><topic>Data acquisition</topic><topic>Deep learning</topic><topic>Energy consumption</topic><topic>Grinding mills</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mining industry</topic><topic>Mining machinery</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Power consumption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loudari, Chaimae</creatorcontrib><creatorcontrib>Cherkaoui, Moha</creatorcontrib><creatorcontrib>Bennani, Rachid</creatorcontrib><creatorcontrib>Harraki, Imad El</creatorcontrib><creatorcontrib>Younsi, Zakaria El</creatorcontrib><creatorcontrib>Adnani, Mohamed El</creatorcontrib><creatorcontrib>Abdelwahed, El Hassan</creatorcontrib><creatorcontrib>Benzakour, Intissar</creatorcontrib><creatorcontrib>Bourzeix, François</creatorcontrib><creatorcontrib>Baina, Karim</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loudari, Chaimae</au><au>Cherkaoui, Moha</au><au>Bennani, Rachid</au><au>Harraki, Imad El</au><au>Younsi, Zakaria El</au><au>Adnani, Mohamed El</au><au>Abdelwahed, El Hassan</au><au>Benzakour, Intissar</au><au>Bourzeix, François</au><au>Baina, Karim</au><au>Boulouard, Zakaria</au><au>Ouaissa, Mariya</au><au>Ouaissa, Mariyam</au><au>Iwendi, Celestine</au><au>Himer, Sarah El</au><au>Mellouli, El Mehdi</au><au>Khan, Inam Ullah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting energy consumption of grinding mills in mining industry : A review</atitle><btitle>AIP conference proceedings</btitle><date>2023-07-11</date><risdate>2023</risdate><volume>2814</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Mines are a complex and challenging industry that needs to consume more energy for the production of minerals. In order to enhance the energy efficiency of the mining industry, artificial intelligence technology is being integrated to manage, predict, and optimize the energy consumption of mining equipment. The energy-intensive equipment in the mining industry is the grinding mills. Due to the complexity and difficulty of modeling the grinding mills, data-driven modeling solves these challenges by predicting and optimizing energy consumption through the development of machine learning models. In this article, a literature review on the application of artificial intelligence models to predict the energy consumption of grinding mills has been conducted. This research study presents a description of the energy prediction system, from the data acquisition to the prediction results. It provides a comparison description of the parameters of available datasets and a classification of their machine learning and deep learning models applied to predict energy consumption or power of mining grinding mills. Furthermore, it identifies the performance parameters of each research study. Then, the research study will be concluded with a recommendation and the main area for future research.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0148768</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2814 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2835642386
source AIP Journals
subjects Artificial intelligence
Complexity
Data acquisition
Deep learning
Energy consumption
Grinding mills
Literature reviews
Machine learning
Mathematical models
Mining industry
Mining machinery
Modelling
Optimization
Parameter identification
Power consumption
title Predicting energy consumption of grinding mills in mining industry : A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20energy%20consumption%20of%20grinding%20mills%20in%20mining%20industry%20:%20A%20review&rft.btitle=AIP%20conference%20proceedings&rft.au=Loudari,%20Chaimae&rft.date=2023-07-11&rft.volume=2814&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0148768&rft_dat=%3Cproquest_scita%3E2835642386%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835642386&rft_id=info:pmid/&rfr_iscdi=true