Discerning mental illnesses from social media posts using machine and deep learning algorithms
Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2745 |
creator | Harish, R. Vaid, Anant Byakod, Shashank S. Kumar, Ajay Arya, Arti |
description | Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’s language patterns through social media posts. Machine Learning and Deep Learning are used to develop promising models that predict if a person is likely to show signs of mental illness. Machine Learning(ML) and Deep Learning(DL) based models like Logistic Regression, Artificial Neural Networks(ANN),Convolution Neural Networks(CNN) and state-of-the-art models like Bi-Directional Encoder Representations from Transformers are leveraged. Results showcase that Deep Learning shows promising results and can be utilized as an ‘initial measure’ of finding if a person has a mental illness and with accuracy scores of above 80% they can prove to be a ‘game changer’. |
doi_str_mv | 10.1063/5.0143052 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2835641763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835641763</sourcerecordid><originalsourceid>FETCH-LOGICAL-p962-e4fc8b6f6497eaf0690dc599a28203cdfd7dcdedbdd9190c120184fecdd48b773</originalsourceid><addsrcrecordid>eNotkEtLAzEYRYMoWKsL_0HAnTA170yWUp9QcNOFK4c0-aZNmUnGZGbhv7fari5cDufCReiWkgUlij_IBaGCE8nO0IxKSSutqDpHM0KMqJjgn5foqpQ9IcxoXc_Q11MoDnIMcYt7iKPtcOi6CKVAwW1OPS7JhUPbgw8WD6mMBU_lH7duFyJgGz32AAPuwB5FttumHMZdX67RRWu7AjennKP1y_N6-VatPl7fl4-rajCKVSBaV29Uq4TRYFuiDPFOGmNZzQh3vvXaOw9-472hhjjKCK1FC857UW-05nN0d9QOOX1PUMZmn6YcD4sNq7lUgmrFD9T9kSoujHYMKTZDDr3NPw0lzd99jWxO9_FfC9hjnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2835641763</pqid></control><display><type>conference_proceeding</type><title>Discerning mental illnesses from social media posts using machine and deep learning algorithms</title><source>AIP Journals Complete</source><creator>Harish, R. ; Vaid, Anant ; Byakod, Shashank S. ; Kumar, Ajay ; Arya, Arti</creator><contributor>Sharaff, Aakanksha ; Kumar, Rajana Suresh ; Netam, Nisha</contributor><creatorcontrib>Harish, R. ; Vaid, Anant ; Byakod, Shashank S. ; Kumar, Ajay ; Arya, Arti ; Sharaff, Aakanksha ; Kumar, Rajana Suresh ; Netam, Nisha</creatorcontrib><description>Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’s language patterns through social media posts. Machine Learning and Deep Learning are used to develop promising models that predict if a person is likely to show signs of mental illness. Machine Learning(ML) and Deep Learning(DL) based models like Logistic Regression, Artificial Neural Networks(ANN),Convolution Neural Networks(CNN) and state-of-the-art models like Bi-Directional Encoder Representations from Transformers are leveraged. Results showcase that Deep Learning shows promising results and can be utilized as an ‘initial measure’ of finding if a person has a mental illness and with accuracy scores of above 80% they can prove to be a ‘game changer’.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0143052</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Coders ; Deep learning ; Digital media ; Illnesses ; Machine learning ; Social networks</subject><ispartof>AIP conference proceedings, 2023, Vol.2745 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0143052$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Sharaff, Aakanksha</contributor><contributor>Kumar, Rajana Suresh</contributor><contributor>Netam, Nisha</contributor><creatorcontrib>Harish, R.</creatorcontrib><creatorcontrib>Vaid, Anant</creatorcontrib><creatorcontrib>Byakod, Shashank S.</creatorcontrib><creatorcontrib>Kumar, Ajay</creatorcontrib><creatorcontrib>Arya, Arti</creatorcontrib><title>Discerning mental illnesses from social media posts using machine and deep learning algorithms</title><title>AIP conference proceedings</title><description>Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’s language patterns through social media posts. Machine Learning and Deep Learning are used to develop promising models that predict if a person is likely to show signs of mental illness. Machine Learning(ML) and Deep Learning(DL) based models like Logistic Regression, Artificial Neural Networks(ANN),Convolution Neural Networks(CNN) and state-of-the-art models like Bi-Directional Encoder Representations from Transformers are leveraged. Results showcase that Deep Learning shows promising results and can be utilized as an ‘initial measure’ of finding if a person has a mental illness and with accuracy scores of above 80% they can prove to be a ‘game changer’.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Coders</subject><subject>Deep learning</subject><subject>Digital media</subject><subject>Illnesses</subject><subject>Machine learning</subject><subject>Social networks</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEYRYMoWKsL_0HAnTA170yWUp9QcNOFK4c0-aZNmUnGZGbhv7fari5cDufCReiWkgUlij_IBaGCE8nO0IxKSSutqDpHM0KMqJjgn5foqpQ9IcxoXc_Q11MoDnIMcYt7iKPtcOi6CKVAwW1OPS7JhUPbgw8WD6mMBU_lH7duFyJgGz32AAPuwB5FttumHMZdX67RRWu7AjennKP1y_N6-VatPl7fl4-rajCKVSBaV29Uq4TRYFuiDPFOGmNZzQh3vvXaOw9-472hhjjKCK1FC857UW-05nN0d9QOOX1PUMZmn6YcD4sNq7lUgmrFD9T9kSoujHYMKTZDDr3NPw0lzd99jWxO9_FfC9hjnQ</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Harish, R.</creator><creator>Vaid, Anant</creator><creator>Byakod, Shashank S.</creator><creator>Kumar, Ajay</creator><creator>Arya, Arti</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230711</creationdate><title>Discerning mental illnesses from social media posts using machine and deep learning algorithms</title><author>Harish, R. ; Vaid, Anant ; Byakod, Shashank S. ; Kumar, Ajay ; Arya, Arti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p962-e4fc8b6f6497eaf0690dc599a28203cdfd7dcdedbdd9190c120184fecdd48b773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Coders</topic><topic>Deep learning</topic><topic>Digital media</topic><topic>Illnesses</topic><topic>Machine learning</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harish, R.</creatorcontrib><creatorcontrib>Vaid, Anant</creatorcontrib><creatorcontrib>Byakod, Shashank S.</creatorcontrib><creatorcontrib>Kumar, Ajay</creatorcontrib><creatorcontrib>Arya, Arti</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harish, R.</au><au>Vaid, Anant</au><au>Byakod, Shashank S.</au><au>Kumar, Ajay</au><au>Arya, Arti</au><au>Sharaff, Aakanksha</au><au>Kumar, Rajana Suresh</au><au>Netam, Nisha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discerning mental illnesses from social media posts using machine and deep learning algorithms</atitle><btitle>AIP conference proceedings</btitle><date>2023-07-11</date><risdate>2023</risdate><volume>2745</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’s language patterns through social media posts. Machine Learning and Deep Learning are used to develop promising models that predict if a person is likely to show signs of mental illness. Machine Learning(ML) and Deep Learning(DL) based models like Logistic Regression, Artificial Neural Networks(ANN),Convolution Neural Networks(CNN) and state-of-the-art models like Bi-Directional Encoder Representations from Transformers are leveraged. Results showcase that Deep Learning shows promising results and can be utilized as an ‘initial measure’ of finding if a person has a mental illness and with accuracy scores of above 80% they can prove to be a ‘game changer’.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0143052</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2745 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2835641763 |
source | AIP Journals Complete |
subjects | Algorithms Artificial neural networks Coders Deep learning Digital media Illnesses Machine learning Social networks |
title | Discerning mental illnesses from social media posts using machine and deep learning algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discerning%20mental%20illnesses%20from%20social%20media%20posts%20using%20machine%20and%20deep%20learning%20algorithms&rft.btitle=AIP%20conference%20proceedings&rft.au=Harish,%20R.&rft.date=2023-07-11&rft.volume=2745&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0143052&rft_dat=%3Cproquest_scita%3E2835641763%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835641763&rft_id=info:pmid/&rfr_iscdi=true |