Discerning mental illnesses from social media posts using machine and deep learning algorithms

Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Harish, R., Vaid, Anant, Byakod, Shashank S., Kumar, Ajay, Arya, Arti
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2745
creator Harish, R.
Vaid, Anant
Byakod, Shashank S.
Kumar, Ajay
Arya, Arti
description Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’s language patterns through social media posts. Machine Learning and Deep Learning are used to develop promising models that predict if a person is likely to show signs of mental illness. Machine Learning(ML) and Deep Learning(DL) based models like Logistic Regression, Artificial Neural Networks(ANN),Convolution Neural Networks(CNN) and state-of-the-art models like Bi-Directional Encoder Representations from Transformers are leveraged. Results showcase that Deep Learning shows promising results and can be utilized as an ‘initial measure’ of finding if a person has a mental illness and with accuracy scores of above 80% they can prove to be a ‘game changer’.
doi_str_mv 10.1063/5.0143052
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2835641763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835641763</sourcerecordid><originalsourceid>FETCH-LOGICAL-p962-e4fc8b6f6497eaf0690dc599a28203cdfd7dcdedbdd9190c120184fecdd48b773</originalsourceid><addsrcrecordid>eNotkEtLAzEYRYMoWKsL_0HAnTA170yWUp9QcNOFK4c0-aZNmUnGZGbhv7fari5cDufCReiWkgUlij_IBaGCE8nO0IxKSSutqDpHM0KMqJjgn5foqpQ9IcxoXc_Q11MoDnIMcYt7iKPtcOi6CKVAwW1OPS7JhUPbgw8WD6mMBU_lH7duFyJgGz32AAPuwB5FttumHMZdX67RRWu7AjennKP1y_N6-VatPl7fl4-rajCKVSBaV29Uq4TRYFuiDPFOGmNZzQh3vvXaOw9-472hhjjKCK1FC857UW-05nN0d9QOOX1PUMZmn6YcD4sNq7lUgmrFD9T9kSoujHYMKTZDDr3NPw0lzd99jWxO9_FfC9hjnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2835641763</pqid></control><display><type>conference_proceeding</type><title>Discerning mental illnesses from social media posts using machine and deep learning algorithms</title><source>AIP Journals Complete</source><creator>Harish, R. ; Vaid, Anant ; Byakod, Shashank S. ; Kumar, Ajay ; Arya, Arti</creator><contributor>Sharaff, Aakanksha ; Kumar, Rajana Suresh ; Netam, Nisha</contributor><creatorcontrib>Harish, R. ; Vaid, Anant ; Byakod, Shashank S. ; Kumar, Ajay ; Arya, Arti ; Sharaff, Aakanksha ; Kumar, Rajana Suresh ; Netam, Nisha</creatorcontrib><description>Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’s language patterns through social media posts. Machine Learning and Deep Learning are used to develop promising models that predict if a person is likely to show signs of mental illness. Machine Learning(ML) and Deep Learning(DL) based models like Logistic Regression, Artificial Neural Networks(ANN),Convolution Neural Networks(CNN) and state-of-the-art models like Bi-Directional Encoder Representations from Transformers are leveraged. Results showcase that Deep Learning shows promising results and can be utilized as an ‘initial measure’ of finding if a person has a mental illness and with accuracy scores of above 80% they can prove to be a ‘game changer’.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0143052</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Coders ; Deep learning ; Digital media ; Illnesses ; Machine learning ; Social networks</subject><ispartof>AIP conference proceedings, 2023, Vol.2745 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0143052$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Sharaff, Aakanksha</contributor><contributor>Kumar, Rajana Suresh</contributor><contributor>Netam, Nisha</contributor><creatorcontrib>Harish, R.</creatorcontrib><creatorcontrib>Vaid, Anant</creatorcontrib><creatorcontrib>Byakod, Shashank S.</creatorcontrib><creatorcontrib>Kumar, Ajay</creatorcontrib><creatorcontrib>Arya, Arti</creatorcontrib><title>Discerning mental illnesses from social media posts using machine and deep learning algorithms</title><title>AIP conference proceedings</title><description>Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’s language patterns through social media posts. Machine Learning and Deep Learning are used to develop promising models that predict if a person is likely to show signs of mental illness. Machine Learning(ML) and Deep Learning(DL) based models like Logistic Regression, Artificial Neural Networks(ANN),Convolution Neural Networks(CNN) and state-of-the-art models like Bi-Directional Encoder Representations from Transformers are leveraged. Results showcase that Deep Learning shows promising results and can be utilized as an ‘initial measure’ of finding if a person has a mental illness and with accuracy scores of above 80% they can prove to be a ‘game changer’.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Coders</subject><subject>Deep learning</subject><subject>Digital media</subject><subject>Illnesses</subject><subject>Machine learning</subject><subject>Social networks</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEYRYMoWKsL_0HAnTA170yWUp9QcNOFK4c0-aZNmUnGZGbhv7fari5cDufCReiWkgUlij_IBaGCE8nO0IxKSSutqDpHM0KMqJjgn5foqpQ9IcxoXc_Q11MoDnIMcYt7iKPtcOi6CKVAwW1OPS7JhUPbgw8WD6mMBU_lH7duFyJgGz32AAPuwB5FttumHMZdX67RRWu7AjennKP1y_N6-VatPl7fl4-rajCKVSBaV29Uq4TRYFuiDPFOGmNZzQh3vvXaOw9-472hhjjKCK1FC857UW-05nN0d9QOOX1PUMZmn6YcD4sNq7lUgmrFD9T9kSoujHYMKTZDDr3NPw0lzd99jWxO9_FfC9hjnQ</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Harish, R.</creator><creator>Vaid, Anant</creator><creator>Byakod, Shashank S.</creator><creator>Kumar, Ajay</creator><creator>Arya, Arti</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230711</creationdate><title>Discerning mental illnesses from social media posts using machine and deep learning algorithms</title><author>Harish, R. ; Vaid, Anant ; Byakod, Shashank S. ; Kumar, Ajay ; Arya, Arti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p962-e4fc8b6f6497eaf0690dc599a28203cdfd7dcdedbdd9190c120184fecdd48b773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Coders</topic><topic>Deep learning</topic><topic>Digital media</topic><topic>Illnesses</topic><topic>Machine learning</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harish, R.</creatorcontrib><creatorcontrib>Vaid, Anant</creatorcontrib><creatorcontrib>Byakod, Shashank S.</creatorcontrib><creatorcontrib>Kumar, Ajay</creatorcontrib><creatorcontrib>Arya, Arti</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harish, R.</au><au>Vaid, Anant</au><au>Byakod, Shashank S.</au><au>Kumar, Ajay</au><au>Arya, Arti</au><au>Sharaff, Aakanksha</au><au>Kumar, Rajana Suresh</au><au>Netam, Nisha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discerning mental illnesses from social media posts using machine and deep learning algorithms</atitle><btitle>AIP conference proceedings</btitle><date>2023-07-11</date><risdate>2023</risdate><volume>2745</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Deep learning has played a pivotal role in solving a wide array of problems. These powerful models can also be used for detecting mental illness. Knowing this in advance shall help individuals to utilize appropriate prophylactic measures and might even help cure them. Reddit is used to identify one’s language patterns through social media posts. Machine Learning and Deep Learning are used to develop promising models that predict if a person is likely to show signs of mental illness. Machine Learning(ML) and Deep Learning(DL) based models like Logistic Regression, Artificial Neural Networks(ANN),Convolution Neural Networks(CNN) and state-of-the-art models like Bi-Directional Encoder Representations from Transformers are leveraged. Results showcase that Deep Learning shows promising results and can be utilized as an ‘initial measure’ of finding if a person has a mental illness and with accuracy scores of above 80% they can prove to be a ‘game changer’.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0143052</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2745 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2835641763
source AIP Journals Complete
subjects Algorithms
Artificial neural networks
Coders
Deep learning
Digital media
Illnesses
Machine learning
Social networks
title Discerning mental illnesses from social media posts using machine and deep learning algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discerning%20mental%20illnesses%20from%20social%20media%20posts%20using%20machine%20and%20deep%20learning%20algorithms&rft.btitle=AIP%20conference%20proceedings&rft.au=Harish,%20R.&rft.date=2023-07-11&rft.volume=2745&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0143052&rft_dat=%3Cproquest_scita%3E2835641763%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835641763&rft_id=info:pmid/&rfr_iscdi=true