Machine learning-assisted design of AlN-based high-performance piezoelectric materials
Dopants play an important role in improving the piezoelectric stress coefficient ( e 33 ) of aluminum nitride (AlN)-based piezoelectric materials. However, the existing experimental or computational approaches cannot provide generalized design criteria or fast predictive capabilities for screening h...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-07, Vol.11 (27), p.1484-14849 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14849 |
---|---|
container_issue | 27 |
container_start_page | 1484 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Jing, Huirong Guan, Chaohong Yang, Yu Zhu, Hong |
description | Dopants play an important role in improving the piezoelectric stress coefficient (
e
33
) of aluminum nitride (AlN)-based piezoelectric materials. However, the existing experimental or computational approaches cannot provide generalized design criteria or fast predictive capabilities for screening high-performance piezoelectric materials over a wide range of composition space. To address this demand, we have designed a general machine learning (ML) strategy to make a comprehensive prediction and exploration of AlN-based piezoelectric materials of various concentrations and compositions. The predicted piezoelectric strain coefficient (
d
33
) was verified to be remarkably consistent with the experimentally available values of Sc-, MgTi-, and MgZr-doped AlN compounds. It is worth noting that an extremely large
d
33
of 202 pC N
−1
was discovered in Sc
0.5
Al
0.5
N. Besides, the first ionization energy, the formation energy of decomposition products, and the number of out-of-plane first-nearest-neighbor cation bonds were revealed to be critical physical quantities to facilitate the prediction of the piezoelectric coefficient based on a detailed investigation of the physical mechanism. This study demonstrates the feasibility of the fast prediction and design of high-performance piezoelectric materials with easily accessible features.
A ML model capable of rapidly predicting the piezoelectric coefficient of AlN-based materials, guiding the design of promising piezoelectric materials. |
doi_str_mv | 10.1039/d3ta02095a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835524396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835524396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-152439da4a4827b95938a1e725a9a94cbc6875ac367b6750753cc71e131ef50b3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsNRevAsBb8LqfmSzu8dQP6HqpXoNk82k3ZImcTc96K83tqJzeYfh4R14CDnn7JozaW8qOQATzCo4IhPBFKM6tdnx327MKZnFuGHjGMYyayfk_Rnc2reYNAih9e2KQow-DlglFUa_apOuTvLmhZYQx9var9a0x1B3YQutw6T3-NVhg24I3iVbGDB4aOIZOanHwNlvTsnb_d1y_kgXrw9P83xBnTB8oFyJVNoKUkiN0KVVVhrgqIUCCzZ1pcuMVuBkpstMK6aVdE5z5JJjrVgpp-Ty0NuH7mOHcSg23S6048tCGKn29dlIXR0oF7oYA9ZFH_wWwmfBWfGjrriVy3yvLh_hiwMcovvj_tXKb2GaajQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835524396</pqid></control><display><type>article</type><title>Machine learning-assisted design of AlN-based high-performance piezoelectric materials</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jing, Huirong ; Guan, Chaohong ; Yang, Yu ; Zhu, Hong</creator><creatorcontrib>Jing, Huirong ; Guan, Chaohong ; Yang, Yu ; Zhu, Hong</creatorcontrib><description>Dopants play an important role in improving the piezoelectric stress coefficient (
e
33
) of aluminum nitride (AlN)-based piezoelectric materials. However, the existing experimental or computational approaches cannot provide generalized design criteria or fast predictive capabilities for screening high-performance piezoelectric materials over a wide range of composition space. To address this demand, we have designed a general machine learning (ML) strategy to make a comprehensive prediction and exploration of AlN-based piezoelectric materials of various concentrations and compositions. The predicted piezoelectric strain coefficient (
d
33
) was verified to be remarkably consistent with the experimentally available values of Sc-, MgTi-, and MgZr-doped AlN compounds. It is worth noting that an extremely large
d
33
of 202 pC N
−1
was discovered in Sc
0.5
Al
0.5
N. Besides, the first ionization energy, the formation energy of decomposition products, and the number of out-of-plane first-nearest-neighbor cation bonds were revealed to be critical physical quantities to facilitate the prediction of the piezoelectric coefficient based on a detailed investigation of the physical mechanism. This study demonstrates the feasibility of the fast prediction and design of high-performance piezoelectric materials with easily accessible features.
A ML model capable of rapidly predicting the piezoelectric coefficient of AlN-based materials, guiding the design of promising piezoelectric materials.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta02095a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum ; Aluminum nitride ; Coefficients ; Design ; Design criteria ; Feasibility studies ; Free energy ; Heat of formation ; Ionization ; Learning algorithms ; Machine learning ; Nearest-neighbor ; Piezoelectricity ; Predictions</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-07, Vol.11 (27), p.1484-14849</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-152439da4a4827b95938a1e725a9a94cbc6875ac367b6750753cc71e131ef50b3</citedby><cites>FETCH-LOGICAL-c281t-152439da4a4827b95938a1e725a9a94cbc6875ac367b6750753cc71e131ef50b3</cites><orcidid>0000-0001-7919-5661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jing, Huirong</creatorcontrib><creatorcontrib>Guan, Chaohong</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><title>Machine learning-assisted design of AlN-based high-performance piezoelectric materials</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Dopants play an important role in improving the piezoelectric stress coefficient (
e
33
) of aluminum nitride (AlN)-based piezoelectric materials. However, the existing experimental or computational approaches cannot provide generalized design criteria or fast predictive capabilities for screening high-performance piezoelectric materials over a wide range of composition space. To address this demand, we have designed a general machine learning (ML) strategy to make a comprehensive prediction and exploration of AlN-based piezoelectric materials of various concentrations and compositions. The predicted piezoelectric strain coefficient (
d
33
) was verified to be remarkably consistent with the experimentally available values of Sc-, MgTi-, and MgZr-doped AlN compounds. It is worth noting that an extremely large
d
33
of 202 pC N
−1
was discovered in Sc
0.5
Al
0.5
N. Besides, the first ionization energy, the formation energy of decomposition products, and the number of out-of-plane first-nearest-neighbor cation bonds were revealed to be critical physical quantities to facilitate the prediction of the piezoelectric coefficient based on a detailed investigation of the physical mechanism. This study demonstrates the feasibility of the fast prediction and design of high-performance piezoelectric materials with easily accessible features.
A ML model capable of rapidly predicting the piezoelectric coefficient of AlN-based materials, guiding the design of promising piezoelectric materials.</description><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>Coefficients</subject><subject>Design</subject><subject>Design criteria</subject><subject>Feasibility studies</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Ionization</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Nearest-neighbor</subject><subject>Piezoelectricity</subject><subject>Predictions</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRsNRevAsBb8LqfmSzu8dQP6HqpXoNk82k3ZImcTc96K83tqJzeYfh4R14CDnn7JozaW8qOQATzCo4IhPBFKM6tdnx327MKZnFuGHjGMYyayfk_Rnc2reYNAih9e2KQow-DlglFUa_apOuTvLmhZYQx9var9a0x1B3YQutw6T3-NVhg24I3iVbGDB4aOIZOanHwNlvTsnb_d1y_kgXrw9P83xBnTB8oFyJVNoKUkiN0KVVVhrgqIUCCzZ1pcuMVuBkpstMK6aVdE5z5JJjrVgpp-Ty0NuH7mOHcSg23S6048tCGKn29dlIXR0oF7oYA9ZFH_wWwmfBWfGjrriVy3yvLh_hiwMcovvj_tXKb2GaajQ</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Jing, Huirong</creator><creator>Guan, Chaohong</creator><creator>Yang, Yu</creator><creator>Zhu, Hong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7919-5661</orcidid></search><sort><creationdate>20230711</creationdate><title>Machine learning-assisted design of AlN-based high-performance piezoelectric materials</title><author>Jing, Huirong ; Guan, Chaohong ; Yang, Yu ; Zhu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-152439da4a4827b95938a1e725a9a94cbc6875ac367b6750753cc71e131ef50b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>Coefficients</topic><topic>Design</topic><topic>Design criteria</topic><topic>Feasibility studies</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Ionization</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Nearest-neighbor</topic><topic>Piezoelectricity</topic><topic>Predictions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Huirong</creatorcontrib><creatorcontrib>Guan, Chaohong</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Huirong</au><au>Guan, Chaohong</au><au>Yang, Yu</au><au>Zhu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-assisted design of AlN-based high-performance piezoelectric materials</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-07-11</date><risdate>2023</risdate><volume>11</volume><issue>27</issue><spage>1484</spage><epage>14849</epage><pages>1484-14849</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Dopants play an important role in improving the piezoelectric stress coefficient (
e
33
) of aluminum nitride (AlN)-based piezoelectric materials. However, the existing experimental or computational approaches cannot provide generalized design criteria or fast predictive capabilities for screening high-performance piezoelectric materials over a wide range of composition space. To address this demand, we have designed a general machine learning (ML) strategy to make a comprehensive prediction and exploration of AlN-based piezoelectric materials of various concentrations and compositions. The predicted piezoelectric strain coefficient (
d
33
) was verified to be remarkably consistent with the experimentally available values of Sc-, MgTi-, and MgZr-doped AlN compounds. It is worth noting that an extremely large
d
33
of 202 pC N
−1
was discovered in Sc
0.5
Al
0.5
N. Besides, the first ionization energy, the formation energy of decomposition products, and the number of out-of-plane first-nearest-neighbor cation bonds were revealed to be critical physical quantities to facilitate the prediction of the piezoelectric coefficient based on a detailed investigation of the physical mechanism. This study demonstrates the feasibility of the fast prediction and design of high-performance piezoelectric materials with easily accessible features.
A ML model capable of rapidly predicting the piezoelectric coefficient of AlN-based materials, guiding the design of promising piezoelectric materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta02095a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7919-5661</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-07, Vol.11 (27), p.1484-14849 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2835524396 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aluminum Aluminum nitride Coefficients Design Design criteria Feasibility studies Free energy Heat of formation Ionization Learning algorithms Machine learning Nearest-neighbor Piezoelectricity Predictions |
title | Machine learning-assisted design of AlN-based high-performance piezoelectric materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-assisted%20design%20of%20AlN-based%20high-performance%20piezoelectric%20materials&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Jing,%20Huirong&rft.date=2023-07-11&rft.volume=11&rft.issue=27&rft.spage=1484&rft.epage=14849&rft.pages=1484-14849&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta02095a&rft_dat=%3Cproquest_cross%3E2835524396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835524396&rft_id=info:pmid/&rfr_iscdi=true |