Simultaneous CO2 and H2O Activation via Integrated Cu Single Atom and N Vacancy Dual‐Site for Enhanced CO Photo‐Production
Photocatalytic conversion of CO2 into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate‐change crisis and realizing a carbon‐neutral economy. Single‐atom photocatalysts with tunable local atomic configurations and unique electronic propertie...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-07, Vol.33 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Duan, Youyu Wang, Yang Zhang, Weixuan Zhang, Jiangwei Ban, Chaogang Yu, Danmei Zhou, Kai Tang, Jinjing Zhang, Xu Han, Xiaodong Gan, Liyong Tao, Xiaoping Zhou, Xiaoyuan |
description | Photocatalytic conversion of CO2 into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate‐change crisis and realizing a carbon‐neutral economy. Single‐atom photocatalysts with tunable local atomic configurations and unique electronic properties have exhibited outstanding catalytic performance in the past decade. However, given their single‐site features they are usually only amenable to activations involving single molecules. For CO2 photoreduction entailing complex activation and dissociation process, designing multiple active sites on a photocatalyst for both CO2 reduction and H2O dissociation simultaneously is still a daunting challenge. Herein, it is precisely construct Cu single‐atom centers and two‐coordinated N vacancies as dual active sites on CN (Cu1/N2CV‐CN). Experimental and theoretical results show that Cu single‐atom centers promote CO2 chemisorption and activation via accumulating photogenerated electrons, and the N2CV sites enhance the dissociation of H2O, thereby facilitating the conversion from COO* to COOH*. Benefiting from the dual‐functional sites, the Cu1/N2CV‐CN exhibits a high selectivity (98.50%) and decent CO production rate of 11.12 µmol g−1 h−1. An ingenious atomic‐level design provides a platform for precisely integrating the modified catalyst with the deterministic identification of the electronic property during CO2 photoreduction process.
Herein, it is delicately constructed Cu single‐atoms anchored CN with N2C vacancies (Cu1/N2CV‐CN) as dual active sites for photocatalytic CO2 reduction. The Cu single‐atoms are identified as the active centers to accumulate photogenerated electrons for promoting CO2 chemisorption, while the N2C vacancy sites are proven to enhance the activation of H2O. |
doi_str_mv | 10.1002/adfm.202301729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2835375056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835375056</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2339-c2450fc81a2542449a0cc07149bbbba964c1952a31f92ad6827dbaa2118713293</originalsourceid><addsrcrecordid>eNo9UE1PwkAQbYwmInr1vIlncHe2X3tsCggJWhLUeNsM2xZK2i62WwwX40_wN_pLbMUwl5k3896b5FnWLaNDRincY5wWQ6DAKfNAnFk95jJ3wCn456eZvV1aV3W9pS3H43bP-lxmRZMbLBPd1CSMgGAZkylEJFAm26PJdEn2GZJZaZJ1hSaJSdiQZVau84QERhd_gifyigpLdSCjBvOfr-9lZhKS6oqMy02771QRWWy00e1xUem4UZ31tXWRYl4nN_-9b71Mxs_hdDCPHmZhMB_sgHMxUGA7NFU-Q3BssG2BVCnqMVus2kLh2ooJB5CzVADGrg9evEIExnyPcRC8b90dfXeVfm-S2sitbqqyfSnB5w73HOq4LUscWR9ZnhzkrsoKrA6SUdkFLLuA5SlgGYwmjyfEfwFo8XHx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835375056</pqid></control><display><type>article</type><title>Simultaneous CO2 and H2O Activation via Integrated Cu Single Atom and N Vacancy Dual‐Site for Enhanced CO Photo‐Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duan, Youyu ; Wang, Yang ; Zhang, Weixuan ; Zhang, Jiangwei ; Ban, Chaogang ; Yu, Danmei ; Zhou, Kai ; Tang, Jinjing ; Zhang, Xu ; Han, Xiaodong ; Gan, Liyong ; Tao, Xiaoping ; Zhou, Xiaoyuan</creator><creatorcontrib>Duan, Youyu ; Wang, Yang ; Zhang, Weixuan ; Zhang, Jiangwei ; Ban, Chaogang ; Yu, Danmei ; Zhou, Kai ; Tang, Jinjing ; Zhang, Xu ; Han, Xiaodong ; Gan, Liyong ; Tao, Xiaoping ; Zhou, Xiaoyuan</creatorcontrib><description>Photocatalytic conversion of CO2 into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate‐change crisis and realizing a carbon‐neutral economy. Single‐atom photocatalysts with tunable local atomic configurations and unique electronic properties have exhibited outstanding catalytic performance in the past decade. However, given their single‐site features they are usually only amenable to activations involving single molecules. For CO2 photoreduction entailing complex activation and dissociation process, designing multiple active sites on a photocatalyst for both CO2 reduction and H2O dissociation simultaneously is still a daunting challenge. Herein, it is precisely construct Cu single‐atom centers and two‐coordinated N vacancies as dual active sites on CN (Cu1/N2CV‐CN). Experimental and theoretical results show that Cu single‐atom centers promote CO2 chemisorption and activation via accumulating photogenerated electrons, and the N2CV sites enhance the dissociation of H2O, thereby facilitating the conversion from COO* to COOH*. Benefiting from the dual‐functional sites, the Cu1/N2CV‐CN exhibits a high selectivity (98.50%) and decent CO production rate of 11.12 µmol g−1 h−1. An ingenious atomic‐level design provides a platform for precisely integrating the modified catalyst with the deterministic identification of the electronic property during CO2 photoreduction process.
Herein, it is delicately constructed Cu single‐atoms anchored CN with N2C vacancies (Cu1/N2CV‐CN) as dual active sites for photocatalytic CO2 reduction. The Cu single‐atoms are identified as the active centers to accumulate photogenerated electrons for promoting CO2 chemisorption, while the N2C vacancy sites are proven to enhance the activation of H2O.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202301729</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>C 3N 4 ; Carbon dioxide ; Chemisorption ; CO 2 photoreduction ; Conversion ; dual‐sites ; Materials science ; N 2C vacancies ; Photocatalysis ; Photocatalysts ; single atom photocatalysts</subject><ispartof>Advanced functional materials, 2023-07, Vol.33 (28), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1088-0809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202301729$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202301729$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Duan, Youyu</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Zhang, Weixuan</creatorcontrib><creatorcontrib>Zhang, Jiangwei</creatorcontrib><creatorcontrib>Ban, Chaogang</creatorcontrib><creatorcontrib>Yu, Danmei</creatorcontrib><creatorcontrib>Zhou, Kai</creatorcontrib><creatorcontrib>Tang, Jinjing</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Han, Xiaodong</creatorcontrib><creatorcontrib>Gan, Liyong</creatorcontrib><creatorcontrib>Tao, Xiaoping</creatorcontrib><creatorcontrib>Zhou, Xiaoyuan</creatorcontrib><title>Simultaneous CO2 and H2O Activation via Integrated Cu Single Atom and N Vacancy Dual‐Site for Enhanced CO Photo‐Production</title><title>Advanced functional materials</title><description>Photocatalytic conversion of CO2 into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate‐change crisis and realizing a carbon‐neutral economy. Single‐atom photocatalysts with tunable local atomic configurations and unique electronic properties have exhibited outstanding catalytic performance in the past decade. However, given their single‐site features they are usually only amenable to activations involving single molecules. For CO2 photoreduction entailing complex activation and dissociation process, designing multiple active sites on a photocatalyst for both CO2 reduction and H2O dissociation simultaneously is still a daunting challenge. Herein, it is precisely construct Cu single‐atom centers and two‐coordinated N vacancies as dual active sites on CN (Cu1/N2CV‐CN). Experimental and theoretical results show that Cu single‐atom centers promote CO2 chemisorption and activation via accumulating photogenerated electrons, and the N2CV sites enhance the dissociation of H2O, thereby facilitating the conversion from COO* to COOH*. Benefiting from the dual‐functional sites, the Cu1/N2CV‐CN exhibits a high selectivity (98.50%) and decent CO production rate of 11.12 µmol g−1 h−1. An ingenious atomic‐level design provides a platform for precisely integrating the modified catalyst with the deterministic identification of the electronic property during CO2 photoreduction process.
Herein, it is delicately constructed Cu single‐atoms anchored CN with N2C vacancies (Cu1/N2CV‐CN) as dual active sites for photocatalytic CO2 reduction. The Cu single‐atoms are identified as the active centers to accumulate photogenerated electrons for promoting CO2 chemisorption, while the N2C vacancy sites are proven to enhance the activation of H2O.</description><subject>C 3N 4</subject><subject>Carbon dioxide</subject><subject>Chemisorption</subject><subject>CO 2 photoreduction</subject><subject>Conversion</subject><subject>dual‐sites</subject><subject>Materials science</subject><subject>N 2C vacancies</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>single atom photocatalysts</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PwkAQbYwmInr1vIlncHe2X3tsCggJWhLUeNsM2xZK2i62WwwX40_wN_pLbMUwl5k3896b5FnWLaNDRincY5wWQ6DAKfNAnFk95jJ3wCn456eZvV1aV3W9pS3H43bP-lxmRZMbLBPd1CSMgGAZkylEJFAm26PJdEn2GZJZaZJ1hSaJSdiQZVau84QERhd_gifyigpLdSCjBvOfr-9lZhKS6oqMy02771QRWWy00e1xUem4UZ31tXWRYl4nN_-9b71Mxs_hdDCPHmZhMB_sgHMxUGA7NFU-Q3BssG2BVCnqMVus2kLh2ooJB5CzVADGrg9evEIExnyPcRC8b90dfXeVfm-S2sitbqqyfSnB5w73HOq4LUscWR9ZnhzkrsoKrA6SUdkFLLuA5SlgGYwmjyfEfwFo8XHx</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Duan, Youyu</creator><creator>Wang, Yang</creator><creator>Zhang, Weixuan</creator><creator>Zhang, Jiangwei</creator><creator>Ban, Chaogang</creator><creator>Yu, Danmei</creator><creator>Zhou, Kai</creator><creator>Tang, Jinjing</creator><creator>Zhang, Xu</creator><creator>Han, Xiaodong</creator><creator>Gan, Liyong</creator><creator>Tao, Xiaoping</creator><creator>Zhou, Xiaoyuan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1088-0809</orcidid></search><sort><creationdate>20230711</creationdate><title>Simultaneous CO2 and H2O Activation via Integrated Cu Single Atom and N Vacancy Dual‐Site for Enhanced CO Photo‐Production</title><author>Duan, Youyu ; Wang, Yang ; Zhang, Weixuan ; Zhang, Jiangwei ; Ban, Chaogang ; Yu, Danmei ; Zhou, Kai ; Tang, Jinjing ; Zhang, Xu ; Han, Xiaodong ; Gan, Liyong ; Tao, Xiaoping ; Zhou, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2339-c2450fc81a2542449a0cc07149bbbba964c1952a31f92ad6827dbaa2118713293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C 3N 4</topic><topic>Carbon dioxide</topic><topic>Chemisorption</topic><topic>CO 2 photoreduction</topic><topic>Conversion</topic><topic>dual‐sites</topic><topic>Materials science</topic><topic>N 2C vacancies</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>single atom photocatalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Youyu</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Zhang, Weixuan</creatorcontrib><creatorcontrib>Zhang, Jiangwei</creatorcontrib><creatorcontrib>Ban, Chaogang</creatorcontrib><creatorcontrib>Yu, Danmei</creatorcontrib><creatorcontrib>Zhou, Kai</creatorcontrib><creatorcontrib>Tang, Jinjing</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Han, Xiaodong</creatorcontrib><creatorcontrib>Gan, Liyong</creatorcontrib><creatorcontrib>Tao, Xiaoping</creatorcontrib><creatorcontrib>Zhou, Xiaoyuan</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Youyu</au><au>Wang, Yang</au><au>Zhang, Weixuan</au><au>Zhang, Jiangwei</au><au>Ban, Chaogang</au><au>Yu, Danmei</au><au>Zhou, Kai</au><au>Tang, Jinjing</au><au>Zhang, Xu</au><au>Han, Xiaodong</au><au>Gan, Liyong</au><au>Tao, Xiaoping</au><au>Zhou, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous CO2 and H2O Activation via Integrated Cu Single Atom and N Vacancy Dual‐Site for Enhanced CO Photo‐Production</atitle><jtitle>Advanced functional materials</jtitle><date>2023-07-11</date><risdate>2023</risdate><volume>33</volume><issue>28</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Photocatalytic conversion of CO2 into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate‐change crisis and realizing a carbon‐neutral economy. Single‐atom photocatalysts with tunable local atomic configurations and unique electronic properties have exhibited outstanding catalytic performance in the past decade. However, given their single‐site features they are usually only amenable to activations involving single molecules. For CO2 photoreduction entailing complex activation and dissociation process, designing multiple active sites on a photocatalyst for both CO2 reduction and H2O dissociation simultaneously is still a daunting challenge. Herein, it is precisely construct Cu single‐atom centers and two‐coordinated N vacancies as dual active sites on CN (Cu1/N2CV‐CN). Experimental and theoretical results show that Cu single‐atom centers promote CO2 chemisorption and activation via accumulating photogenerated electrons, and the N2CV sites enhance the dissociation of H2O, thereby facilitating the conversion from COO* to COOH*. Benefiting from the dual‐functional sites, the Cu1/N2CV‐CN exhibits a high selectivity (98.50%) and decent CO production rate of 11.12 µmol g−1 h−1. An ingenious atomic‐level design provides a platform for precisely integrating the modified catalyst with the deterministic identification of the electronic property during CO2 photoreduction process.
Herein, it is delicately constructed Cu single‐atoms anchored CN with N2C vacancies (Cu1/N2CV‐CN) as dual active sites for photocatalytic CO2 reduction. The Cu single‐atoms are identified as the active centers to accumulate photogenerated electrons for promoting CO2 chemisorption, while the N2C vacancy sites are proven to enhance the activation of H2O.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202301729</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1088-0809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-07, Vol.33 (28), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2835375056 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | C 3N 4 Carbon dioxide Chemisorption CO 2 photoreduction Conversion dual‐sites Materials science N 2C vacancies Photocatalysis Photocatalysts single atom photocatalysts |
title | Simultaneous CO2 and H2O Activation via Integrated Cu Single Atom and N Vacancy Dual‐Site for Enhanced CO Photo‐Production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20CO2%20and%20H2O%20Activation%20via%20Integrated%20Cu%20Single%20Atom%20and%20N%20Vacancy%20Dual%E2%80%90Site%20for%20Enhanced%20CO%20Photo%E2%80%90Production&rft.jtitle=Advanced%20functional%20materials&rft.au=Duan,%20Youyu&rft.date=2023-07-11&rft.volume=33&rft.issue=28&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202301729&rft_dat=%3Cproquest_wiley%3E2835375056%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835375056&rft_id=info:pmid/&rfr_iscdi=true |