Marangoni Flow Driven via Hole Structure of Soluble Acene–Polymer Blends for Selective Nitrogen Dioxide Sensing

The correlations between semiconductor type and gas sensing properties in soluble acene/polymer blends have not yet been examined. Here, the phase separation mechanism in pseudo‐liquid phase blend film is investigated and an unusual solid‐state morphology that is effective for amperometric gas sensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-07, Vol.33 (28), p.n/a
Hauptverfasser: Lee, Jung Hun, Lee, Seunghan, Lee, Hoonkyung, Choi, Hyun Ho, Chae, Huijeong, Kim, Youngnan, Yang, Seok Joo, Anthony, John E., Jang, Ho Won, Won, Sang Min, Lee, Wi Hyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The correlations between semiconductor type and gas sensing properties in soluble acene/polymer blends have not yet been examined. Here, the phase separation mechanism in pseudo‐liquid phase blend film is investigated and an unusual solid‐state morphology that is effective for amperometric gas sensing performance is demonstrated. In 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS–pentacene)/poly(fluorine‐co‐triarylamine) (PTAA) blend, two phases are uniformly mixed, without being completely phase‐separated due to the similar solubility and surface tension. On the other hand, in 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl) anthradithiophene (diF–TES ADT)/PTAA blend, the diF−TES ADT molecules are segregated both at the air–film, and film–substrate interfaces, and subsequently crystallized with a high degree of crystal perfection. In the meanwhile, Marangoni‐flow induces crater‐like via hole structure of PTAA at the middle layer. In situ measurement of (ultraviolet–visible) UV–vis absorption spectra and computational calculation reveal kinetics of liquid–solid–crystal transition in relation to the functional groups of soluble acene. Interestingly, flow driven hole structure of PTAA in diF–TES ADT/PTAA blend film allows the target NO2 gas to selectively penetrate the channel region, thereby enhancing sensitivity toward NO2, while decreasing affinity with other gases. The results provide protocols for fabricating highlperformance field‐effect transistors and gas sensors in a blending system. Thermodynamic (i.e., Marangoni flow) and kinetic characteristics of soluble acene in a binary blend system change the solid‐state morphology, thereby determining charge carrier mobility and gas sensing performance. The critical parameters that affect the morphology in a quasi‐liquid phase blend are fully investigated by utilizing both experimental and computational analyses.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202215215