Phase Transition Engineering of Host Perovskite toward Optimal Exsolution‐facilitated Catalysts for Carbon Dioxide Electrolysis

The in situ exsolution technique of nanoparticles has brought new opportunities for the utilization of perovskite‐based catalysts in solid oxide cells. However, the lack of control over the structural evolution of host perovskites during the promotion of exsolution has restricted the architectural e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-07, Vol.135 (29), p.n/a
Hauptverfasser: Zhang, Bo‐Wen, Zhu, Meng‐Nan, Gao, Min‐Rui, Chen, Jian, Xi, Xiuan, Shen, Jing, Feng, Ren‐Fei, Semagina, Natalia, Duan, Nanqi, Zeng, Hongbo, Luo, Jing‐Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Zhang, Bo‐Wen
Zhu, Meng‐Nan
Gao, Min‐Rui
Chen, Jian
Xi, Xiuan
Shen, Jing
Feng, Ren‐Fei
Semagina, Natalia
Duan, Nanqi
Zeng, Hongbo
Luo, Jing‐Li
description The in situ exsolution technique of nanoparticles has brought new opportunities for the utilization of perovskite‐based catalysts in solid oxide cells. However, the lack of control over the structural evolution of host perovskites during the promotion of exsolution has restricted the architectural exploitation of exsolution‐facilitated perovskites. In this study, we strategically broke the long‐standing trade‐off phenomenon between promoted exsolution and suppressed phase transition via B‐site supplement, thus broadening the scope of exsolution‐facilitated perovskite materials. Using carbon dioxide electrolysis as an illustrative case study, we demonstrate that the catalytic activity and stability of perovskites with exsolved nanoparticles (P‐eNs) can be selectively enhanced by regulating the explicit phase of host perovskites, accentuating the critical role of the architectures of perovskite scaffold in catalytic reactions occurring on P‐eNs. The concept demonstrated could potentially pave the way for designing the advanced exsolution‐facilitated P‐eNs materials and unveiling a wide range of catalytic chemistry taking place on P‐eNs. We have implemented a set of strategies to precisely control the phase evolution of host perovskite without compromising exsolution. Using carbon dioxide electrolysis as an example, we demonstrated how regulating phase structure can enhance the activity and stability of exsolved perovskites, emphasizing the importance of phase evolution control in catalytic chemistry occurring on perovskites with exsolution.
doi_str_mv 10.1002/ange.202305552
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835329069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835329069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1572-fa0bcb3fcd05b5bcffadf8b57a853ae6a8d3f576432008b32732f26917a3c2de3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5WyJc4pjx_k5ViW0SBXtoZytjWMXlxAX24X2Bm_AM_IkpCqCI6fVaueb1QxClzEZxITQa2iXakAJZYRzTo9QL-Y0jljGs2PUIyRJopwmxSk6835FCElpVvTQx_wRvMILB603wdgWl-3StEo50y6x1XhifcBz5eyrfzJB4WDfwNV4tg7mGRpcbr1tNnvw6_1TgzSNCRBUjUcQoNn54LG2rttc1XnfGLs1tcJlo2Rwtrsbf45ONDReXfzMPnq4LRejSTSdje9Gw2kkY57RSAOpZMW0rAmveCW1hlrnFc8g5wxUCnnNNM_ShFFC8orRjFFN0yLOgElaK9ZHVwfftbMvG-WDWNmNa7uXguaMM1qQtOhUg4NKOuu9U1qsXRfU7URMxL5msa9Z_NbcAcUBeDON2v2jFsP7cfnHfgMuXIXS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835329069</pqid></control><display><type>article</type><title>Phase Transition Engineering of Host Perovskite toward Optimal Exsolution‐facilitated Catalysts for Carbon Dioxide Electrolysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Bo‐Wen ; Zhu, Meng‐Nan ; Gao, Min‐Rui ; Chen, Jian ; Xi, Xiuan ; Shen, Jing ; Feng, Ren‐Fei ; Semagina, Natalia ; Duan, Nanqi ; Zeng, Hongbo ; Luo, Jing‐Li</creator><creatorcontrib>Zhang, Bo‐Wen ; Zhu, Meng‐Nan ; Gao, Min‐Rui ; Chen, Jian ; Xi, Xiuan ; Shen, Jing ; Feng, Ren‐Fei ; Semagina, Natalia ; Duan, Nanqi ; Zeng, Hongbo ; Luo, Jing‐Li</creatorcontrib><description>The in situ exsolution technique of nanoparticles has brought new opportunities for the utilization of perovskite‐based catalysts in solid oxide cells. However, the lack of control over the structural evolution of host perovskites during the promotion of exsolution has restricted the architectural exploitation of exsolution‐facilitated perovskites. In this study, we strategically broke the long‐standing trade‐off phenomenon between promoted exsolution and suppressed phase transition via B‐site supplement, thus broadening the scope of exsolution‐facilitated perovskite materials. Using carbon dioxide electrolysis as an illustrative case study, we demonstrate that the catalytic activity and stability of perovskites with exsolved nanoparticles (P‐eNs) can be selectively enhanced by regulating the explicit phase of host perovskites, accentuating the critical role of the architectures of perovskite scaffold in catalytic reactions occurring on P‐eNs. The concept demonstrated could potentially pave the way for designing the advanced exsolution‐facilitated P‐eNs materials and unveiling a wide range of catalytic chemistry taking place on P‐eNs. We have implemented a set of strategies to precisely control the phase evolution of host perovskite without compromising exsolution. Using carbon dioxide electrolysis as an example, we demonstrated how regulating phase structure can enhance the activity and stability of exsolved perovskites, emphasizing the importance of phase evolution control in catalytic chemistry occurring on perovskites with exsolution.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202305552</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Carbon Dioxide Electrolysis ; Catalysts ; Catalytic activity ; Chemistry ; Electrolysis ; Electrolytic cells ; Exsolution ; Nanoparticles ; Perovskites ; Phase Transition ; Phase transitions ; Rate-Limiting Step ; Stability of Host Perovskite</subject><ispartof>Angewandte Chemie, 2023-07, Vol.135 (29), p.n/a</ispartof><rights>2023 The Authors. Published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1572-fa0bcb3fcd05b5bcffadf8b57a853ae6a8d3f576432008b32732f26917a3c2de3</cites><orcidid>0000-0003-1304-0899 ; 0000-0002-2465-7280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202305552$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202305552$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Bo‐Wen</creatorcontrib><creatorcontrib>Zhu, Meng‐Nan</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Xi, Xiuan</creatorcontrib><creatorcontrib>Shen, Jing</creatorcontrib><creatorcontrib>Feng, Ren‐Fei</creatorcontrib><creatorcontrib>Semagina, Natalia</creatorcontrib><creatorcontrib>Duan, Nanqi</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><creatorcontrib>Luo, Jing‐Li</creatorcontrib><title>Phase Transition Engineering of Host Perovskite toward Optimal Exsolution‐facilitated Catalysts for Carbon Dioxide Electrolysis</title><title>Angewandte Chemie</title><description>The in situ exsolution technique of nanoparticles has brought new opportunities for the utilization of perovskite‐based catalysts in solid oxide cells. However, the lack of control over the structural evolution of host perovskites during the promotion of exsolution has restricted the architectural exploitation of exsolution‐facilitated perovskites. In this study, we strategically broke the long‐standing trade‐off phenomenon between promoted exsolution and suppressed phase transition via B‐site supplement, thus broadening the scope of exsolution‐facilitated perovskite materials. Using carbon dioxide electrolysis as an illustrative case study, we demonstrate that the catalytic activity and stability of perovskites with exsolved nanoparticles (P‐eNs) can be selectively enhanced by regulating the explicit phase of host perovskites, accentuating the critical role of the architectures of perovskite scaffold in catalytic reactions occurring on P‐eNs. The concept demonstrated could potentially pave the way for designing the advanced exsolution‐facilitated P‐eNs materials and unveiling a wide range of catalytic chemistry taking place on P‐eNs. We have implemented a set of strategies to precisely control the phase evolution of host perovskite without compromising exsolution. Using carbon dioxide electrolysis as an example, we demonstrated how regulating phase structure can enhance the activity and stability of exsolved perovskites, emphasizing the importance of phase evolution control in catalytic chemistry occurring on perovskites with exsolution.</description><subject>Carbon dioxide</subject><subject>Carbon Dioxide Electrolysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Exsolution</subject><subject>Nanoparticles</subject><subject>Perovskites</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Rate-Limiting Step</subject><subject>Stability of Host Perovskite</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1OwzAQhC0EEqVw5WyJc4pjx_k5ViW0SBXtoZytjWMXlxAX24X2Bm_AM_IkpCqCI6fVaueb1QxClzEZxITQa2iXakAJZYRzTo9QL-Y0jljGs2PUIyRJopwmxSk6835FCElpVvTQx_wRvMILB603wdgWl-3StEo50y6x1XhifcBz5eyrfzJB4WDfwNV4tg7mGRpcbr1tNnvw6_1TgzSNCRBUjUcQoNn54LG2rttc1XnfGLs1tcJlo2Rwtrsbf45ONDReXfzMPnq4LRejSTSdje9Gw2kkY57RSAOpZMW0rAmveCW1hlrnFc8g5wxUCnnNNM_ShFFC8orRjFFN0yLOgElaK9ZHVwfftbMvG-WDWNmNa7uXguaMM1qQtOhUg4NKOuu9U1qsXRfU7URMxL5msa9Z_NbcAcUBeDON2v2jFsP7cfnHfgMuXIXS</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Zhang, Bo‐Wen</creator><creator>Zhu, Meng‐Nan</creator><creator>Gao, Min‐Rui</creator><creator>Chen, Jian</creator><creator>Xi, Xiuan</creator><creator>Shen, Jing</creator><creator>Feng, Ren‐Fei</creator><creator>Semagina, Natalia</creator><creator>Duan, Nanqi</creator><creator>Zeng, Hongbo</creator><creator>Luo, Jing‐Li</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1304-0899</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid></search><sort><creationdate>20230717</creationdate><title>Phase Transition Engineering of Host Perovskite toward Optimal Exsolution‐facilitated Catalysts for Carbon Dioxide Electrolysis</title><author>Zhang, Bo‐Wen ; Zhu, Meng‐Nan ; Gao, Min‐Rui ; Chen, Jian ; Xi, Xiuan ; Shen, Jing ; Feng, Ren‐Fei ; Semagina, Natalia ; Duan, Nanqi ; Zeng, Hongbo ; Luo, Jing‐Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1572-fa0bcb3fcd05b5bcffadf8b57a853ae6a8d3f576432008b32732f26917a3c2de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Carbon Dioxide Electrolysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Exsolution</topic><topic>Nanoparticles</topic><topic>Perovskites</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Rate-Limiting Step</topic><topic>Stability of Host Perovskite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bo‐Wen</creatorcontrib><creatorcontrib>Zhu, Meng‐Nan</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Xi, Xiuan</creatorcontrib><creatorcontrib>Shen, Jing</creatorcontrib><creatorcontrib>Feng, Ren‐Fei</creatorcontrib><creatorcontrib>Semagina, Natalia</creatorcontrib><creatorcontrib>Duan, Nanqi</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><creatorcontrib>Luo, Jing‐Li</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bo‐Wen</au><au>Zhu, Meng‐Nan</au><au>Gao, Min‐Rui</au><au>Chen, Jian</au><au>Xi, Xiuan</au><au>Shen, Jing</au><au>Feng, Ren‐Fei</au><au>Semagina, Natalia</au><au>Duan, Nanqi</au><au>Zeng, Hongbo</au><au>Luo, Jing‐Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Transition Engineering of Host Perovskite toward Optimal Exsolution‐facilitated Catalysts for Carbon Dioxide Electrolysis</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-07-17</date><risdate>2023</risdate><volume>135</volume><issue>29</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The in situ exsolution technique of nanoparticles has brought new opportunities for the utilization of perovskite‐based catalysts in solid oxide cells. However, the lack of control over the structural evolution of host perovskites during the promotion of exsolution has restricted the architectural exploitation of exsolution‐facilitated perovskites. In this study, we strategically broke the long‐standing trade‐off phenomenon between promoted exsolution and suppressed phase transition via B‐site supplement, thus broadening the scope of exsolution‐facilitated perovskite materials. Using carbon dioxide electrolysis as an illustrative case study, we demonstrate that the catalytic activity and stability of perovskites with exsolved nanoparticles (P‐eNs) can be selectively enhanced by regulating the explicit phase of host perovskites, accentuating the critical role of the architectures of perovskite scaffold in catalytic reactions occurring on P‐eNs. The concept demonstrated could potentially pave the way for designing the advanced exsolution‐facilitated P‐eNs materials and unveiling a wide range of catalytic chemistry taking place on P‐eNs. We have implemented a set of strategies to precisely control the phase evolution of host perovskite without compromising exsolution. Using carbon dioxide electrolysis as an example, we demonstrated how regulating phase structure can enhance the activity and stability of exsolved perovskites, emphasizing the importance of phase evolution control in catalytic chemistry occurring on perovskites with exsolution.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202305552</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1304-0899</orcidid><orcidid>https://orcid.org/0000-0002-2465-7280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-07, Vol.135 (29), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2835329069
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Carbon Dioxide Electrolysis
Catalysts
Catalytic activity
Chemistry
Electrolysis
Electrolytic cells
Exsolution
Nanoparticles
Perovskites
Phase Transition
Phase transitions
Rate-Limiting Step
Stability of Host Perovskite
title Phase Transition Engineering of Host Perovskite toward Optimal Exsolution‐facilitated Catalysts for Carbon Dioxide Electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Transition%20Engineering%20of%20Host%20Perovskite%20toward%20Optimal%20Exsolution%E2%80%90facilitated%20Catalysts%20for%20Carbon%20Dioxide%20Electrolysis&rft.jtitle=Angewandte%20Chemie&rft.au=Zhang,%20Bo%E2%80%90Wen&rft.date=2023-07-17&rft.volume=135&rft.issue=29&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202305552&rft_dat=%3Cproquest_cross%3E2835329069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835329069&rft_id=info:pmid/&rfr_iscdi=true