New Riccati Velocity Controller of the Spherical Robot

For the spherical robot, an efficient and precise velocity controller suitable for different terrains is crucial. In this paper, a new Riccati controller with feedforward compensation based on Kalman observer (FKO-Riccati controller) with better control performance and stronger robustness is propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2023-07, Vol.108 (3), p.51, Article 51
Hauptverfasser: Wang, You, Wang, Yixu, Liu, Yifan, Guan, Xiaoqing, Hu, Tao, Zhang, Ziang, Hao, Jie, Li, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 51
container_title Journal of intelligent & robotic systems
container_volume 108
creator Wang, You
Wang, Yixu
Liu, Yifan
Guan, Xiaoqing
Hu, Tao
Zhang, Ziang
Hao, Jie
Li, Guang
description For the spherical robot, an efficient and precise velocity controller suitable for different terrains is crucial. In this paper, a new Riccati controller with feedforward compensation based on Kalman observer (FKO-Riccati controller) with better control performance and stronger robustness is proposed for velocity control of the spherical robot. An accurate dynamic model of the robot is established. Based on the model, a Riccati controller with velocity tracking performance and a Kalman velocity observer are proposed, and the output is feedforward compensated. To verify the effectiveness of the proposed controller, a series of experiments were conducted using a spherical robot named Rotunbot. The simulations and experimental results show that no matter what terrain the robot was in, compared with the traditional PID controller, the FKO-Riccati controller had better control performance and stronger robustness, whether it was going straight or turning.
doi_str_mv 10.1007/s10846-023-01871-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835326343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835326343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-834528de7d07c6410c8ffe4df22cc5bf0722438ba7c676424efb242d6ed2a7113</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkJJNkllK8QVGol22YySR2ytjUZErp2xsdwZ2rw89_OfARcs7gkgGoq8RAC1kA8gKYVqzYHZAJK1WWAqpDMoEKWbYreUxOUloBQKXLakLko9vRRWdtPXT0zfXBdsOezsJ6iKHvXaTB02Hp6PNm6WJn654uQhOGU3Lk6z65s987Ja-3Ny-z-2L-dPcwu54XFhUMheaiRN061YKyUjCw2nsnWo9obdl4UIiC66bOrpIChfMNCmyla7FWjPEpuRh3NzF8bl0azCps4zq_NKh5yVFywXMKx5SNIaXovNnE7qOOe8PAfPMxIx-T-ZgfPmaXS3wspRxev7v4N_1P6wu6JmeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835326343</pqid></control><display><type>article</type><title>New Riccati Velocity Controller of the Spherical Robot</title><source>SpringerLink Journals</source><creator>Wang, You ; Wang, Yixu ; Liu, Yifan ; Guan, Xiaoqing ; Hu, Tao ; Zhang, Ziang ; Hao, Jie ; Li, Guang</creator><creatorcontrib>Wang, You ; Wang, Yixu ; Liu, Yifan ; Guan, Xiaoqing ; Hu, Tao ; Zhang, Ziang ; Hao, Jie ; Li, Guang</creatorcontrib><description>For the spherical robot, an efficient and precise velocity controller suitable for different terrains is crucial. In this paper, a new Riccati controller with feedforward compensation based on Kalman observer (FKO-Riccati controller) with better control performance and stronger robustness is proposed for velocity control of the spherical robot. An accurate dynamic model of the robot is established. Based on the model, a Riccati controller with velocity tracking performance and a Kalman velocity observer are proposed, and the output is feedforward compensated. To verify the effectiveness of the proposed controller, a series of experiments were conducted using a spherical robot named Rotunbot. The simulations and experimental results show that no matter what terrain the robot was in, compared with the traditional PID controller, the FKO-Riccati controller had better control performance and stronger robustness, whether it was going straight or turning.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-023-01871-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Control ; Control algorithms ; Controllers ; Design ; Dynamic models ; Electrical Engineering ; Energy consumption ; Engineering ; Experiments ; Feedforward control ; Mechanical Engineering ; Mechatronics ; Motion control ; Pneumatics ; Proportional integral derivative ; Robot control ; Robotics ; Robots ; Robust control ; Robustness ; Short Paper ; Simulation ; Tracking control ; Velocity</subject><ispartof>Journal of intelligent &amp; robotic systems, 2023-07, Vol.108 (3), p.51, Article 51</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-834528de7d07c6410c8ffe4df22cc5bf0722438ba7c676424efb242d6ed2a7113</cites><orcidid>0000-0002-1253-3985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-023-01871-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-023-01871-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, You</creatorcontrib><creatorcontrib>Wang, Yixu</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Guan, Xiaoqing</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Hao, Jie</creatorcontrib><creatorcontrib>Li, Guang</creatorcontrib><title>New Riccati Velocity Controller of the Spherical Robot</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>For the spherical robot, an efficient and precise velocity controller suitable for different terrains is crucial. In this paper, a new Riccati controller with feedforward compensation based on Kalman observer (FKO-Riccati controller) with better control performance and stronger robustness is proposed for velocity control of the spherical robot. An accurate dynamic model of the robot is established. Based on the model, a Riccati controller with velocity tracking performance and a Kalman velocity observer are proposed, and the output is feedforward compensated. To verify the effectiveness of the proposed controller, a series of experiments were conducted using a spherical robot named Rotunbot. The simulations and experimental results show that no matter what terrain the robot was in, compared with the traditional PID controller, the FKO-Riccati controller had better control performance and stronger robustness, whether it was going straight or turning.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Design</subject><subject>Dynamic models</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Feedforward control</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Motion control</subject><subject>Pneumatics</subject><subject>Proportional integral derivative</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Short Paper</subject><subject>Simulation</subject><subject>Tracking control</subject><subject>Velocity</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgevTkJJNkllK8QVGol22YySR2ytjUZErp2xsdwZ2rw89_OfARcs7gkgGoq8RAC1kA8gKYVqzYHZAJK1WWAqpDMoEKWbYreUxOUloBQKXLakLko9vRRWdtPXT0zfXBdsOezsJ6iKHvXaTB02Hp6PNm6WJn654uQhOGU3Lk6z65s987Ja-3Ny-z-2L-dPcwu54XFhUMheaiRN061YKyUjCw2nsnWo9obdl4UIiC66bOrpIChfMNCmyla7FWjPEpuRh3NzF8bl0azCps4zq_NKh5yVFywXMKx5SNIaXovNnE7qOOe8PAfPMxIx-T-ZgfPmaXS3wspRxev7v4N_1P6wu6JmeM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, You</creator><creator>Wang, Yixu</creator><creator>Liu, Yifan</creator><creator>Guan, Xiaoqing</creator><creator>Hu, Tao</creator><creator>Zhang, Ziang</creator><creator>Hao, Jie</creator><creator>Li, Guang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1253-3985</orcidid></search><sort><creationdate>20230701</creationdate><title>New Riccati Velocity Controller of the Spherical Robot</title><author>Wang, You ; Wang, Yixu ; Liu, Yifan ; Guan, Xiaoqing ; Hu, Tao ; Zhang, Ziang ; Hao, Jie ; Li, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-834528de7d07c6410c8ffe4df22cc5bf0722438ba7c676424efb242d6ed2a7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Design</topic><topic>Dynamic models</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Feedforward control</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Motion control</topic><topic>Pneumatics</topic><topic>Proportional integral derivative</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Short Paper</topic><topic>Simulation</topic><topic>Tracking control</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, You</creatorcontrib><creatorcontrib>Wang, Yixu</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Guan, Xiaoqing</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Hao, Jie</creatorcontrib><creatorcontrib>Li, Guang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, You</au><au>Wang, Yixu</au><au>Liu, Yifan</au><au>Guan, Xiaoqing</au><au>Hu, Tao</au><au>Zhang, Ziang</au><au>Hao, Jie</au><au>Li, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Riccati Velocity Controller of the Spherical Robot</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>108</volume><issue>3</issue><spage>51</spage><pages>51-</pages><artnum>51</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>For the spherical robot, an efficient and precise velocity controller suitable for different terrains is crucial. In this paper, a new Riccati controller with feedforward compensation based on Kalman observer (FKO-Riccati controller) with better control performance and stronger robustness is proposed for velocity control of the spherical robot. An accurate dynamic model of the robot is established. Based on the model, a Riccati controller with velocity tracking performance and a Kalman velocity observer are proposed, and the output is feedforward compensated. To verify the effectiveness of the proposed controller, a series of experiments were conducted using a spherical robot named Rotunbot. The simulations and experimental results show that no matter what terrain the robot was in, compared with the traditional PID controller, the FKO-Riccati controller had better control performance and stronger robustness, whether it was going straight or turning.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-023-01871-w</doi><orcidid>https://orcid.org/0000-0002-1253-3985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2023-07, Vol.108 (3), p.51, Article 51
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2835326343
source SpringerLink Journals
subjects Artificial Intelligence
Control
Control algorithms
Controllers
Design
Dynamic models
Electrical Engineering
Energy consumption
Engineering
Experiments
Feedforward control
Mechanical Engineering
Mechatronics
Motion control
Pneumatics
Proportional integral derivative
Robot control
Robotics
Robots
Robust control
Robustness
Short Paper
Simulation
Tracking control
Velocity
title New Riccati Velocity Controller of the Spherical Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Riccati%20Velocity%20Controller%20of%20the%20Spherical%20Robot&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Wang,%20You&rft.date=2023-07-01&rft.volume=108&rft.issue=3&rft.spage=51&rft.pages=51-&rft.artnum=51&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-023-01871-w&rft_dat=%3Cproquest_cross%3E2835326343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835326343&rft_id=info:pmid/&rfr_iscdi=true