Experimental study on thermal fatigue damage and failure mechanisms of basalt exposed to high‐temperature treatments
Understanding the effects of thermal fatigue damage on the failure mechanisms of rocks is a key concern in underground engineering. The effects of high temperature on the physical–mechanical behaviors and the failure mechanism of basalt under uniaxial compression are investigated with a combination...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2023-08, Vol.46 (8), p.2909-2928 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2928 |
---|---|
container_issue | 8 |
container_start_page | 2909 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 46 |
creator | Niu, Yong Wang, Gang Wang, Jinguo Liu, Xiqi Zhang, Ranran Qiao, Jiaxing Zhang, Jianzhi |
description | Understanding the effects of thermal fatigue damage on the failure mechanisms of rocks is a key concern in underground engineering. The effects of high temperature on the physical–mechanical behaviors and the failure mechanism of basalt under uniaxial compression are investigated with a combination of acoustic emission (AE), computed tomography (CT), and scanning electron microscope (SEM). The high temperature heavily affects the physical–mechanical properties of basalt but has no effect on the mineral compositions. The evolution characteristics of inter‐event time function F(τ) and cumulative AE energy can be employed to characterize the fracture process of thermally damaged basalt. The damage mechanisms of thermal fatigue are attributed to the occurrence of intergranular cracks, intragranular cracks, and transgranular cracks and irregular holes within basalt. The failure mechanisms of basalt change from shear fracture to mixed tensile–shear fracture and finally to tensile fracture based on the statistical characteristics of low and high dominant frequencies.
Highlights
The thermal fatigue effects on the physical–mechanical behaviors of basalt are studied.
The relationship between failure process and AE characteristics is constructed.
The damage mechanisms of thermal fatigue for basalt are revealed.
The failure mechanisms of basalt under uniaxial compression are revealed. |
doi_str_mv | 10.1111/ffe.14052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2834863186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834863186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-b0cbbfc341983a017c0386ffa3975a6b45360f996eb831e6d4c8fd1d047209403</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0ySSTySyltCoU3Ci4C5mZm86U-TPJaLvzEXxGn8TUuvXC5cLhnHvgQ-iakhkNMzcGZpSTJD5BE8oFiWKRJadoItNERGkiX8_RhXNbQqjgjE3Q-3I3gK1b6LxusPNjucd9h30Ftg2C0b7ejIBL3eoNYN2VQaqb0QJuoah0V7vW4d7gXDvdeAy7oXdQYt_jqt5U359fHtpQoP0h4i1of6hyl-jM6MbB1d-dopfV8nnxEK2f7h8Xd-uoiLM0jnJS5LkpGKeZZJrQtCBMCmM0y9JEi5wnTBCTZQJyySiIkhfSlLQkPI1Jxgmbopvj38H2byM4r7b9aLtQqWLJuBSMhp2i26OrsL1zFowaAhJt94oSdcCqAlb1izV450fvR93A_n-jWq2Wx8QPdPR76w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834863186</pqid></control><display><type>article</type><title>Experimental study on thermal fatigue damage and failure mechanisms of basalt exposed to high‐temperature treatments</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Niu, Yong ; Wang, Gang ; Wang, Jinguo ; Liu, Xiqi ; Zhang, Ranran ; Qiao, Jiaxing ; Zhang, Jianzhi</creator><creatorcontrib>Niu, Yong ; Wang, Gang ; Wang, Jinguo ; Liu, Xiqi ; Zhang, Ranran ; Qiao, Jiaxing ; Zhang, Jianzhi</creatorcontrib><description>Understanding the effects of thermal fatigue damage on the failure mechanisms of rocks is a key concern in underground engineering. The effects of high temperature on the physical–mechanical behaviors and the failure mechanism of basalt under uniaxial compression are investigated with a combination of acoustic emission (AE), computed tomography (CT), and scanning electron microscope (SEM). The high temperature heavily affects the physical–mechanical properties of basalt but has no effect on the mineral compositions. The evolution characteristics of inter‐event time function F(τ) and cumulative AE energy can be employed to characterize the fracture process of thermally damaged basalt. The damage mechanisms of thermal fatigue are attributed to the occurrence of intergranular cracks, intragranular cracks, and transgranular cracks and irregular holes within basalt. The failure mechanisms of basalt change from shear fracture to mixed tensile–shear fracture and finally to tensile fracture based on the statistical characteristics of low and high dominant frequencies.
Highlights
The thermal fatigue effects on the physical–mechanical behaviors of basalt are studied.
The relationship between failure process and AE characteristics is constructed.
The damage mechanisms of thermal fatigue for basalt are revealed.
The failure mechanisms of basalt under uniaxial compression are revealed.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.14052</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Acoustic emission ; Basalt ; Computed tomography ; Damage ; dominant frequency ; Electron microscopes ; Emission analysis ; failure mechanism ; Failure mechanisms ; Fatigue cracks ; Fatigue failure ; High temperature ; High temperature effects ; high‐temperature treatment ; Mechanical properties ; Thermal fatigue ; thermal fatigue damage ; Time functions ; Transgranular cracks ; uniaxial compression</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2023-08, Vol.46 (8), p.2909-2928</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-b0cbbfc341983a017c0386ffa3975a6b45360f996eb831e6d4c8fd1d047209403</citedby><cites>FETCH-LOGICAL-c2972-b0cbbfc341983a017c0386ffa3975a6b45360f996eb831e6d4c8fd1d047209403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.14052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.14052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Niu, Yong</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Jinguo</creatorcontrib><creatorcontrib>Liu, Xiqi</creatorcontrib><creatorcontrib>Zhang, Ranran</creatorcontrib><creatorcontrib>Qiao, Jiaxing</creatorcontrib><creatorcontrib>Zhang, Jianzhi</creatorcontrib><title>Experimental study on thermal fatigue damage and failure mechanisms of basalt exposed to high‐temperature treatments</title><title>Fatigue & fracture of engineering materials & structures</title><description>Understanding the effects of thermal fatigue damage on the failure mechanisms of rocks is a key concern in underground engineering. The effects of high temperature on the physical–mechanical behaviors and the failure mechanism of basalt under uniaxial compression are investigated with a combination of acoustic emission (AE), computed tomography (CT), and scanning electron microscope (SEM). The high temperature heavily affects the physical–mechanical properties of basalt but has no effect on the mineral compositions. The evolution characteristics of inter‐event time function F(τ) and cumulative AE energy can be employed to characterize the fracture process of thermally damaged basalt. The damage mechanisms of thermal fatigue are attributed to the occurrence of intergranular cracks, intragranular cracks, and transgranular cracks and irregular holes within basalt. The failure mechanisms of basalt change from shear fracture to mixed tensile–shear fracture and finally to tensile fracture based on the statistical characteristics of low and high dominant frequencies.
Highlights
The thermal fatigue effects on the physical–mechanical behaviors of basalt are studied.
The relationship between failure process and AE characteristics is constructed.
The damage mechanisms of thermal fatigue for basalt are revealed.
The failure mechanisms of basalt under uniaxial compression are revealed.</description><subject>Acoustic emission</subject><subject>Basalt</subject><subject>Computed tomography</subject><subject>Damage</subject><subject>dominant frequency</subject><subject>Electron microscopes</subject><subject>Emission analysis</subject><subject>failure mechanism</subject><subject>Failure mechanisms</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>High temperature</subject><subject>High temperature effects</subject><subject>high‐temperature treatment</subject><subject>Mechanical properties</subject><subject>Thermal fatigue</subject><subject>thermal fatigue damage</subject><subject>Time functions</subject><subject>Transgranular cracks</subject><subject>uniaxial compression</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0ySSTySyltCoU3Ci4C5mZm86U-TPJaLvzEXxGn8TUuvXC5cLhnHvgQ-iakhkNMzcGZpSTJD5BE8oFiWKRJadoItNERGkiX8_RhXNbQqjgjE3Q-3I3gK1b6LxusPNjucd9h30Ftg2C0b7ejIBL3eoNYN2VQaqb0QJuoah0V7vW4d7gXDvdeAy7oXdQYt_jqt5U359fHtpQoP0h4i1of6hyl-jM6MbB1d-dopfV8nnxEK2f7h8Xd-uoiLM0jnJS5LkpGKeZZJrQtCBMCmM0y9JEi5wnTBCTZQJyySiIkhfSlLQkPI1Jxgmbopvj38H2byM4r7b9aLtQqWLJuBSMhp2i26OrsL1zFowaAhJt94oSdcCqAlb1izV450fvR93A_n-jWq2Wx8QPdPR76w</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Niu, Yong</creator><creator>Wang, Gang</creator><creator>Wang, Jinguo</creator><creator>Liu, Xiqi</creator><creator>Zhang, Ranran</creator><creator>Qiao, Jiaxing</creator><creator>Zhang, Jianzhi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202308</creationdate><title>Experimental study on thermal fatigue damage and failure mechanisms of basalt exposed to high‐temperature treatments</title><author>Niu, Yong ; Wang, Gang ; Wang, Jinguo ; Liu, Xiqi ; Zhang, Ranran ; Qiao, Jiaxing ; Zhang, Jianzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-b0cbbfc341983a017c0386ffa3975a6b45360f996eb831e6d4c8fd1d047209403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic emission</topic><topic>Basalt</topic><topic>Computed tomography</topic><topic>Damage</topic><topic>dominant frequency</topic><topic>Electron microscopes</topic><topic>Emission analysis</topic><topic>failure mechanism</topic><topic>Failure mechanisms</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>High temperature</topic><topic>High temperature effects</topic><topic>high‐temperature treatment</topic><topic>Mechanical properties</topic><topic>Thermal fatigue</topic><topic>thermal fatigue damage</topic><topic>Time functions</topic><topic>Transgranular cracks</topic><topic>uniaxial compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yong</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Jinguo</creatorcontrib><creatorcontrib>Liu, Xiqi</creatorcontrib><creatorcontrib>Zhang, Ranran</creatorcontrib><creatorcontrib>Qiao, Jiaxing</creatorcontrib><creatorcontrib>Zhang, Jianzhi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yong</au><au>Wang, Gang</au><au>Wang, Jinguo</au><au>Liu, Xiqi</au><au>Zhang, Ranran</au><au>Qiao, Jiaxing</au><au>Zhang, Jianzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study on thermal fatigue damage and failure mechanisms of basalt exposed to high‐temperature treatments</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2023-08</date><risdate>2023</risdate><volume>46</volume><issue>8</issue><spage>2909</spage><epage>2928</epage><pages>2909-2928</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Understanding the effects of thermal fatigue damage on the failure mechanisms of rocks is a key concern in underground engineering. The effects of high temperature on the physical–mechanical behaviors and the failure mechanism of basalt under uniaxial compression are investigated with a combination of acoustic emission (AE), computed tomography (CT), and scanning electron microscope (SEM). The high temperature heavily affects the physical–mechanical properties of basalt but has no effect on the mineral compositions. The evolution characteristics of inter‐event time function F(τ) and cumulative AE energy can be employed to characterize the fracture process of thermally damaged basalt. The damage mechanisms of thermal fatigue are attributed to the occurrence of intergranular cracks, intragranular cracks, and transgranular cracks and irregular holes within basalt. The failure mechanisms of basalt change from shear fracture to mixed tensile–shear fracture and finally to tensile fracture based on the statistical characteristics of low and high dominant frequencies.
Highlights
The thermal fatigue effects on the physical–mechanical behaviors of basalt are studied.
The relationship between failure process and AE characteristics is constructed.
The damage mechanisms of thermal fatigue for basalt are revealed.
The failure mechanisms of basalt under uniaxial compression are revealed.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.14052</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2023-08, Vol.46 (8), p.2909-2928 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2834863186 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acoustic emission Basalt Computed tomography Damage dominant frequency Electron microscopes Emission analysis failure mechanism Failure mechanisms Fatigue cracks Fatigue failure High temperature High temperature effects high‐temperature treatment Mechanical properties Thermal fatigue thermal fatigue damage Time functions Transgranular cracks uniaxial compression |
title | Experimental study on thermal fatigue damage and failure mechanisms of basalt exposed to high‐temperature treatments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20on%20thermal%20fatigue%20damage%20and%20failure%20mechanisms%20of%20basalt%20exposed%20to%20high%E2%80%90temperature%20treatments&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Niu,%20Yong&rft.date=2023-08&rft.volume=46&rft.issue=8&rft.spage=2909&rft.epage=2928&rft.pages=2909-2928&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.14052&rft_dat=%3Cproquest_cross%3E2834863186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834863186&rft_id=info:pmid/&rfr_iscdi=true |