Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning
Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunn...
Gespeichert in:
Veröffentlicht in: | International journal of ITS research 2023-08, Vol.21 (2), p.277-292 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 2 |
container_start_page | 277 |
container_title | International journal of ITS research |
container_volume | 21 |
creator | Kobayashi, Kaito Kubo, Nobuaki |
description | Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunnel. Before driving, it is convenience if we can simulate the GNSS signal environment using a three-dimensional (3D) map and predict the availability of RTK. It is also important to know the limitation of RTK for other sensors. Therefore, we predicted it using machine learning based on the past test-driving and simulated signal environment datasets. The prediction accuracy was almost 65–80% from two evaluation tests in Tokyo and we found several new issues to consider for RTK availability prediction. |
doi_str_mv | 10.1007/s13177-023-00352-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2834741737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834741737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b203249f3f974197ee0a7b19cdfb4d7cfc1029bcd18df177455304db126bf4d23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxNrgV-JkWZWnCKKq2rXl-FFcpUmxU6T-PQ5BYsdsZqS5547mAnBN8C3BWNxFwogQCFOGMGYZRfkZmJAiL1CRZ-V5mhlPc4bZJZjFuMOpMkwF5hNglsEar3vftbBzcGVVg9Z-b-Grb-1e9V7DZRf9sPftFs6_lG9U7Rvfn2BCVp0ycBOHFbuHb-oAVWtS1x8Jh5VVYcCuwIVTTbSz3z4Fm8eH9eIZVe9PL4t5hTQrsh7VFDPKS8dcKTgphbVYiZqU2riaG6GdJpiWtTakMC59zLOMYW5qQvPacUPZFNyMvofQfR5t7OWuO4Y2nZS0YDyZCiaSio4qHboYg3XyEPxehZMkWA6ByjFQmQKVP4HKPEFshGISt1sb_qz_ob4BZ4N3qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834741737</pqid></control><display><type>article</type><title>Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning</title><source>Springer Nature - Complete Springer Journals</source><creator>Kobayashi, Kaito ; Kubo, Nobuaki</creator><creatorcontrib>Kobayashi, Kaito ; Kubo, Nobuaki</creatorcontrib><description>Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunnel. Before driving, it is convenience if we can simulate the GNSS signal environment using a three-dimensional (3D) map and predict the availability of RTK. It is also important to know the limitation of RTK for other sensors. Therefore, we predicted it using machine learning based on the past test-driving and simulated signal environment datasets. The prediction accuracy was almost 65–80% from two evaluation tests in Tokyo and we found several new issues to consider for RTK availability prediction.</description><identifier>ISSN: 1348-8503</identifier><identifier>EISSN: 1868-8659</identifier><identifier>DOI: 10.1007/s13177-023-00352-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automotive Engineering ; Availability ; Civil Engineering ; Computer Imaging ; Electrical Engineering ; Engineering ; Global navigation satellite system ; Kinematics ; Machine learning ; Pattern Recognition and Graphics ; Real time ; Robotics and Automation ; User Interfaces and Human Computer Interaction ; Vision</subject><ispartof>International journal of ITS research, 2023-08, Vol.21 (2), p.277-292</ispartof><rights>The Author(s), under exclusive licence to Intelligent Transportation Systems Japan 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b203249f3f974197ee0a7b19cdfb4d7cfc1029bcd18df177455304db126bf4d23</citedby><cites>FETCH-LOGICAL-c385t-b203249f3f974197ee0a7b19cdfb4d7cfc1029bcd18df177455304db126bf4d23</cites><orcidid>0000-0002-1828-2427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13177-023-00352-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13177-023-00352-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Kobayashi, Kaito</creatorcontrib><creatorcontrib>Kubo, Nobuaki</creatorcontrib><title>Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning</title><title>International journal of ITS research</title><addtitle>Int. J. ITS Res</addtitle><description>Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunnel. Before driving, it is convenience if we can simulate the GNSS signal environment using a three-dimensional (3D) map and predict the availability of RTK. It is also important to know the limitation of RTK for other sensors. Therefore, we predicted it using machine learning based on the past test-driving and simulated signal environment datasets. The prediction accuracy was almost 65–80% from two evaluation tests in Tokyo and we found several new issues to consider for RTK availability prediction.</description><subject>Automotive Engineering</subject><subject>Availability</subject><subject>Civil Engineering</subject><subject>Computer Imaging</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Global navigation satellite system</subject><subject>Kinematics</subject><subject>Machine learning</subject><subject>Pattern Recognition and Graphics</subject><subject>Real time</subject><subject>Robotics and Automation</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Vision</subject><issn>1348-8503</issn><issn>1868-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CyxNrgV-JkWZWnCKKq2rXl-FFcpUmxU6T-PQ5BYsdsZqS5547mAnBN8C3BWNxFwogQCFOGMGYZRfkZmJAiL1CRZ-V5mhlPc4bZJZjFuMOpMkwF5hNglsEar3vftbBzcGVVg9Z-b-Grb-1e9V7DZRf9sPftFs6_lG9U7Rvfn2BCVp0ycBOHFbuHb-oAVWtS1x8Jh5VVYcCuwIVTTbSz3z4Fm8eH9eIZVe9PL4t5hTQrsh7VFDPKS8dcKTgphbVYiZqU2riaG6GdJpiWtTakMC59zLOMYW5qQvPacUPZFNyMvofQfR5t7OWuO4Y2nZS0YDyZCiaSio4qHboYg3XyEPxehZMkWA6ByjFQmQKVP4HKPEFshGISt1sb_qz_ob4BZ4N3qg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Kobayashi, Kaito</creator><creator>Kubo, Nobuaki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1828-2427</orcidid></search><sort><creationdate>20230801</creationdate><title>Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning</title><author>Kobayashi, Kaito ; Kubo, Nobuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b203249f3f974197ee0a7b19cdfb4d7cfc1029bcd18df177455304db126bf4d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automotive Engineering</topic><topic>Availability</topic><topic>Civil Engineering</topic><topic>Computer Imaging</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Global navigation satellite system</topic><topic>Kinematics</topic><topic>Machine learning</topic><topic>Pattern Recognition and Graphics</topic><topic>Real time</topic><topic>Robotics and Automation</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Kaito</creatorcontrib><creatorcontrib>Kubo, Nobuaki</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of ITS research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Kaito</au><au>Kubo, Nobuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning</atitle><jtitle>International journal of ITS research</jtitle><stitle>Int. J. ITS Res</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>21</volume><issue>2</issue><spage>277</spage><epage>292</epage><pages>277-292</pages><issn>1348-8503</issn><eissn>1868-8659</eissn><abstract>Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunnel. Before driving, it is convenience if we can simulate the GNSS signal environment using a three-dimensional (3D) map and predict the availability of RTK. It is also important to know the limitation of RTK for other sensors. Therefore, we predicted it using machine learning based on the past test-driving and simulated signal environment datasets. The prediction accuracy was almost 65–80% from two evaluation tests in Tokyo and we found several new issues to consider for RTK availability prediction.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13177-023-00352-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1828-2427</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1348-8503 |
ispartof | International journal of ITS research, 2023-08, Vol.21 (2), p.277-292 |
issn | 1348-8503 1868-8659 |
language | eng |
recordid | cdi_proquest_journals_2834741737 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Availability Civil Engineering Computer Imaging Electrical Engineering Engineering Global navigation satellite system Kinematics Machine learning Pattern Recognition and Graphics Real time Robotics and Automation User Interfaces and Human Computer Interaction Vision |
title | Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Real-Time%20Kinematic%20Positioning%20Availability%20on%20Road%20Using%203D%20Map%20and%20Machine%20Learning&rft.jtitle=International%20journal%20of%20ITS%20research&rft.au=Kobayashi,%20Kaito&rft.date=2023-08-01&rft.volume=21&rft.issue=2&rft.spage=277&rft.epage=292&rft.pages=277-292&rft.issn=1348-8503&rft.eissn=1868-8659&rft_id=info:doi/10.1007/s13177-023-00352-6&rft_dat=%3Cproquest_cross%3E2834741737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834741737&rft_id=info:pmid/&rfr_iscdi=true |