Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning

Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of ITS research 2023-08, Vol.21 (2), p.277-292
Hauptverfasser: Kobayashi, Kaito, Kubo, Nobuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 2
container_start_page 277
container_title International journal of ITS research
container_volume 21
creator Kobayashi, Kaito
Kubo, Nobuaki
description Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunnel. Before driving, it is convenience if we can simulate the GNSS signal environment using a three-dimensional (3D) map and predict the availability of RTK. It is also important to know the limitation of RTK for other sensors. Therefore, we predicted it using machine learning based on the past test-driving and simulated signal environment datasets. The prediction accuracy was almost 65–80% from two evaluation tests in Tokyo and we found several new issues to consider for RTK availability prediction.
doi_str_mv 10.1007/s13177-023-00352-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2834741737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834741737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b203249f3f974197ee0a7b19cdfb4d7cfc1029bcd18df177455304db126bf4d23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxNrgV-JkWZWnCKKq2rXl-FFcpUmxU6T-PQ5BYsdsZqS5547mAnBN8C3BWNxFwogQCFOGMGYZRfkZmJAiL1CRZ-V5mhlPc4bZJZjFuMOpMkwF5hNglsEar3vftbBzcGVVg9Z-b-Grb-1e9V7DZRf9sPftFs6_lG9U7Rvfn2BCVp0ycBOHFbuHb-oAVWtS1x8Jh5VVYcCuwIVTTbSz3z4Fm8eH9eIZVe9PL4t5hTQrsh7VFDPKS8dcKTgphbVYiZqU2riaG6GdJpiWtTakMC59zLOMYW5qQvPacUPZFNyMvofQfR5t7OWuO4Y2nZS0YDyZCiaSio4qHboYg3XyEPxehZMkWA6ByjFQmQKVP4HKPEFshGISt1sb_qz_ob4BZ4N3qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834741737</pqid></control><display><type>article</type><title>Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning</title><source>Springer Nature - Complete Springer Journals</source><creator>Kobayashi, Kaito ; Kubo, Nobuaki</creator><creatorcontrib>Kobayashi, Kaito ; Kubo, Nobuaki</creatorcontrib><description>Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunnel. Before driving, it is convenience if we can simulate the GNSS signal environment using a three-dimensional (3D) map and predict the availability of RTK. It is also important to know the limitation of RTK for other sensors. Therefore, we predicted it using machine learning based on the past test-driving and simulated signal environment datasets. The prediction accuracy was almost 65–80% from two evaluation tests in Tokyo and we found several new issues to consider for RTK availability prediction.</description><identifier>ISSN: 1348-8503</identifier><identifier>EISSN: 1868-8659</identifier><identifier>DOI: 10.1007/s13177-023-00352-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automotive Engineering ; Availability ; Civil Engineering ; Computer Imaging ; Electrical Engineering ; Engineering ; Global navigation satellite system ; Kinematics ; Machine learning ; Pattern Recognition and Graphics ; Real time ; Robotics and Automation ; User Interfaces and Human Computer Interaction ; Vision</subject><ispartof>International journal of ITS research, 2023-08, Vol.21 (2), p.277-292</ispartof><rights>The Author(s), under exclusive licence to Intelligent Transportation Systems Japan 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b203249f3f974197ee0a7b19cdfb4d7cfc1029bcd18df177455304db126bf4d23</citedby><cites>FETCH-LOGICAL-c385t-b203249f3f974197ee0a7b19cdfb4d7cfc1029bcd18df177455304db126bf4d23</cites><orcidid>0000-0002-1828-2427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13177-023-00352-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13177-023-00352-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Kobayashi, Kaito</creatorcontrib><creatorcontrib>Kubo, Nobuaki</creatorcontrib><title>Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning</title><title>International journal of ITS research</title><addtitle>Int. J. ITS Res</addtitle><description>Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunnel. Before driving, it is convenience if we can simulate the GNSS signal environment using a three-dimensional (3D) map and predict the availability of RTK. It is also important to know the limitation of RTK for other sensors. Therefore, we predicted it using machine learning based on the past test-driving and simulated signal environment datasets. The prediction accuracy was almost 65–80% from two evaluation tests in Tokyo and we found several new issues to consider for RTK availability prediction.</description><subject>Automotive Engineering</subject><subject>Availability</subject><subject>Civil Engineering</subject><subject>Computer Imaging</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Global navigation satellite system</subject><subject>Kinematics</subject><subject>Machine learning</subject><subject>Pattern Recognition and Graphics</subject><subject>Real time</subject><subject>Robotics and Automation</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Vision</subject><issn>1348-8503</issn><issn>1868-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CyxNrgV-JkWZWnCKKq2rXl-FFcpUmxU6T-PQ5BYsdsZqS5547mAnBN8C3BWNxFwogQCFOGMGYZRfkZmJAiL1CRZ-V5mhlPc4bZJZjFuMOpMkwF5hNglsEar3vftbBzcGVVg9Z-b-Grb-1e9V7DZRf9sPftFs6_lG9U7Rvfn2BCVp0ycBOHFbuHb-oAVWtS1x8Jh5VVYcCuwIVTTbSz3z4Fm8eH9eIZVe9PL4t5hTQrsh7VFDPKS8dcKTgphbVYiZqU2riaG6GdJpiWtTakMC59zLOMYW5qQvPacUPZFNyMvofQfR5t7OWuO4Y2nZS0YDyZCiaSio4qHboYg3XyEPxehZMkWA6ByjFQmQKVP4HKPEFshGISt1sb_qz_ob4BZ4N3qg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Kobayashi, Kaito</creator><creator>Kubo, Nobuaki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1828-2427</orcidid></search><sort><creationdate>20230801</creationdate><title>Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning</title><author>Kobayashi, Kaito ; Kubo, Nobuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b203249f3f974197ee0a7b19cdfb4d7cfc1029bcd18df177455304db126bf4d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automotive Engineering</topic><topic>Availability</topic><topic>Civil Engineering</topic><topic>Computer Imaging</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Global navigation satellite system</topic><topic>Kinematics</topic><topic>Machine learning</topic><topic>Pattern Recognition and Graphics</topic><topic>Real time</topic><topic>Robotics and Automation</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Kaito</creatorcontrib><creatorcontrib>Kubo, Nobuaki</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of ITS research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Kaito</au><au>Kubo, Nobuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning</atitle><jtitle>International journal of ITS research</jtitle><stitle>Int. J. ITS Res</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>21</volume><issue>2</issue><spage>277</spage><epage>292</epage><pages>277-292</pages><issn>1348-8503</issn><eissn>1868-8659</eissn><abstract>Real-Time Kinematic (RTK) positioning is a precise positioning method, which is expected to support self-driving. However, it is known that the availability of RTK highly depends on the Global Navigation Satellite System (GNSS) signal environment, which is influenced by buildings and viaduct of tunnel. Before driving, it is convenience if we can simulate the GNSS signal environment using a three-dimensional (3D) map and predict the availability of RTK. It is also important to know the limitation of RTK for other sensors. Therefore, we predicted it using machine learning based on the past test-driving and simulated signal environment datasets. The prediction accuracy was almost 65–80% from two evaluation tests in Tokyo and we found several new issues to consider for RTK availability prediction.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13177-023-00352-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1828-2427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1348-8503
ispartof International journal of ITS research, 2023-08, Vol.21 (2), p.277-292
issn 1348-8503
1868-8659
language eng
recordid cdi_proquest_journals_2834741737
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Availability
Civil Engineering
Computer Imaging
Electrical Engineering
Engineering
Global navigation satellite system
Kinematics
Machine learning
Pattern Recognition and Graphics
Real time
Robotics and Automation
User Interfaces and Human Computer Interaction
Vision
title Prediction of Real-Time Kinematic Positioning Availability on Road Using 3D Map and Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Real-Time%20Kinematic%20Positioning%20Availability%20on%20Road%20Using%203D%20Map%20and%20Machine%20Learning&rft.jtitle=International%20journal%20of%20ITS%20research&rft.au=Kobayashi,%20Kaito&rft.date=2023-08-01&rft.volume=21&rft.issue=2&rft.spage=277&rft.epage=292&rft.pages=277-292&rft.issn=1348-8503&rft.eissn=1868-8659&rft_id=info:doi/10.1007/s13177-023-00352-6&rft_dat=%3Cproquest_cross%3E2834741737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834741737&rft_id=info:pmid/&rfr_iscdi=true