Scalar and mean curvature comparison via μ-bubbles

Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension n ≤ 7 . The model spaces we use are warped products over scalar-flat manifolds with log -concave warping functions.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-09, Vol.62 (7), Article 187
1. Verfasser: Räde, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 62
creator Räde, Daniel
description Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension n ≤ 7 . The model spaces we use are warped products over scalar-flat manifolds with log -concave warping functions.
doi_str_mv 10.1007/s00526-023-02520-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2834483773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834483773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2348-4f754580c0e0630b692e1fd121413c547a51da6cea479a938df300e9df1e3c993</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuC6-hNbtImSxn8gwEX6jrcpql06M-YTAd8N5_BZ7JawZ2Ly9mc71z4GDsXcCkAiqsEoGXOQeJ0WgI3B2whFEoOBvUhW4BViss8t8fsJKUNgNBGqgXDJ08txYz6KusC9Zkf4552YwyZH7otxSYNfbZvKPv84OVYlm1Ip-yopjaFs99cspfbm-fVPV8_3j2srtfcS1SGq7rQShvwECBHKHMrg6grIYUS6LUqSIuKch9IFZYsmqpGgGCrWgT01uKSXcy72zi8jSHt3GYYYz-9dNKgUgaLAqeWnFs-DinFULttbDqK706A-5bjZjlukuN-5DgzQThDaSr3ryH-Tf9DfQFRfWX3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834483773</pqid></control><display><type>article</type><title>Scalar and mean curvature comparison via μ-bubbles</title><source>SpringerLink Journals</source><creator>Räde, Daniel</creator><creatorcontrib>Räde, Daniel</creatorcontrib><description>Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension n ≤ 7 . The model spaces we use are warped products over scalar-flat manifolds with log -concave warping functions.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-023-02520-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Curvature ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2023-09, Vol.62 (7), Article 187</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2348-4f754580c0e0630b692e1fd121413c547a51da6cea479a938df300e9df1e3c993</citedby><cites>FETCH-LOGICAL-c2348-4f754580c0e0630b692e1fd121413c547a51da6cea479a938df300e9df1e3c993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-023-02520-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-023-02520-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Räde, Daniel</creatorcontrib><title>Scalar and mean curvature comparison via μ-bubbles</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension n ≤ 7 . The model spaces we use are warped products over scalar-flat manifolds with log -concave warping functions.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Curvature</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuC6-hNbtImSxn8gwEX6jrcpql06M-YTAd8N5_BZ7JawZ2Ly9mc71z4GDsXcCkAiqsEoGXOQeJ0WgI3B2whFEoOBvUhW4BViss8t8fsJKUNgNBGqgXDJ08txYz6KusC9Zkf4552YwyZH7otxSYNfbZvKPv84OVYlm1Ip-yopjaFs99cspfbm-fVPV8_3j2srtfcS1SGq7rQShvwECBHKHMrg6grIYUS6LUqSIuKch9IFZYsmqpGgGCrWgT01uKSXcy72zi8jSHt3GYYYz-9dNKgUgaLAqeWnFs-DinFULttbDqK706A-5bjZjlukuN-5DgzQThDaSr3ryH-Tf9DfQFRfWX3</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Räde, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20230901</creationdate><title>Scalar and mean curvature comparison via μ-bubbles</title><author>Räde, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2348-4f754580c0e0630b692e1fd121413c547a51da6cea479a938df300e9df1e3c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Curvature</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Räde, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Räde, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalar and mean curvature comparison via μ-bubbles</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>62</volume><issue>7</issue><artnum>187</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension n ≤ 7 . The model spaces we use are warped products over scalar-flat manifolds with log -concave warping functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-023-02520-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2023-09, Vol.62 (7), Article 187
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2834483773
source SpringerLink Journals
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Curvature
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Systems Theory
Theoretical
title Scalar and mean curvature comparison via μ-bubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalar%20and%20mean%20curvature%20comparison%20via%20%CE%BC-bubbles&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=R%C3%A4de,%20Daniel&rft.date=2023-09-01&rft.volume=62&rft.issue=7&rft.artnum=187&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-023-02520-8&rft_dat=%3Cproquest_cross%3E2834483773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834483773&rft_id=info:pmid/&rfr_iscdi=true