Scalar and mean curvature comparison via μ-bubbles
Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension n ≤ 7 . The model spaces we use are warped products over scalar-flat manifolds with log -concave warping functions.
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023-09, Vol.62 (7), Article 187 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 62 |
creator | Räde, Daniel |
description | Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension
n
≤
7
. The model spaces we use are warped products over scalar-flat manifolds with
log
-concave warping functions. |
doi_str_mv | 10.1007/s00526-023-02520-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2834483773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834483773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2348-4f754580c0e0630b692e1fd121413c547a51da6cea479a938df300e9df1e3c993</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuC6-hNbtImSxn8gwEX6jrcpql06M-YTAd8N5_BZ7JawZ2Ly9mc71z4GDsXcCkAiqsEoGXOQeJ0WgI3B2whFEoOBvUhW4BViss8t8fsJKUNgNBGqgXDJ08txYz6KusC9Zkf4552YwyZH7otxSYNfbZvKPv84OVYlm1Ip-yopjaFs99cspfbm-fVPV8_3j2srtfcS1SGq7rQShvwECBHKHMrg6grIYUS6LUqSIuKch9IFZYsmqpGgGCrWgT01uKSXcy72zi8jSHt3GYYYz-9dNKgUgaLAqeWnFs-DinFULttbDqK706A-5bjZjlukuN-5DgzQThDaSr3ryH-Tf9DfQFRfWX3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834483773</pqid></control><display><type>article</type><title>Scalar and mean curvature comparison via μ-bubbles</title><source>SpringerLink Journals</source><creator>Räde, Daniel</creator><creatorcontrib>Räde, Daniel</creatorcontrib><description>Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension
n
≤
7
. The model spaces we use are warped products over scalar-flat manifolds with
log
-concave warping functions.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-023-02520-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Curvature ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2023-09, Vol.62 (7), Article 187</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2348-4f754580c0e0630b692e1fd121413c547a51da6cea479a938df300e9df1e3c993</citedby><cites>FETCH-LOGICAL-c2348-4f754580c0e0630b692e1fd121413c547a51da6cea479a938df300e9df1e3c993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-023-02520-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-023-02520-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Räde, Daniel</creatorcontrib><title>Scalar and mean curvature comparison via μ-bubbles</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension
n
≤
7
. The model spaces we use are warped products over scalar-flat manifolds with
log
-concave warping functions.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Curvature</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuC6-hNbtImSxn8gwEX6jrcpql06M-YTAd8N5_BZ7JawZ2Ly9mc71z4GDsXcCkAiqsEoGXOQeJ0WgI3B2whFEoOBvUhW4BViss8t8fsJKUNgNBGqgXDJ08txYz6KusC9Zkf4552YwyZH7otxSYNfbZvKPv84OVYlm1Ip-yopjaFs99cspfbm-fVPV8_3j2srtfcS1SGq7rQShvwECBHKHMrg6grIYUS6LUqSIuKch9IFZYsmqpGgGCrWgT01uKSXcy72zi8jSHt3GYYYz-9dNKgUgaLAqeWnFs-DinFULttbDqK706A-5bjZjlukuN-5DgzQThDaSr3ryH-Tf9DfQFRfWX3</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Räde, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20230901</creationdate><title>Scalar and mean curvature comparison via μ-bubbles</title><author>Räde, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2348-4f754580c0e0630b692e1fd121413c547a51da6cea479a938df300e9df1e3c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Curvature</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Räde, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Räde, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalar and mean curvature comparison via μ-bubbles</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>62</volume><issue>7</issue><artnum>187</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension
n
≤
7
. The model spaces we use are warped products over scalar-flat manifolds with
log
-concave warping functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-023-02520-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2023-09, Vol.62 (7), Article 187 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2834483773 |
source | SpringerLink Journals |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Curvature Mathematical and Computational Physics Mathematics Mathematics and Statistics Systems Theory Theoretical |
title | Scalar and mean curvature comparison via μ-bubbles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalar%20and%20mean%20curvature%20comparison%20via%20%CE%BC-bubbles&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=R%C3%A4de,%20Daniel&rft.date=2023-09-01&rft.volume=62&rft.issue=7&rft.artnum=187&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-023-02520-8&rft_dat=%3Cproquest_cross%3E2834483773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834483773&rft_id=info:pmid/&rfr_iscdi=true |