Effect of Cobalt Doping on Structural, Morphological, Magnetic, Electrical, and Optical Properties of (Ba0.7Sr0.3)0.98Ca0.02Ti1−XCoxO3 Ceramics for Device Applications

Considering the multifunctional performance, the (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.2) ceramics are successfully synthesized using the traditional solid‐phase reaction method. The effect of cobalt doping on the samples’ structural, morphological, magnetic, electrical, and optical character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2023-07, Vol.220 (13), p.n/a
Hauptverfasser: Mahmud, Hasan, Ahamed, Jamal Uddin, Khan, Mohammed Nazrul Islam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 220
creator Mahmud, Hasan
Ahamed, Jamal Uddin
Khan, Mohammed Nazrul Islam
description Considering the multifunctional performance, the (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.2) ceramics are successfully synthesized using the traditional solid‐phase reaction method. The effect of cobalt doping on the samples’ structural, morphological, magnetic, electrical, and optical characteristics is elucidated. Raman spectroscopy and X‐ray diffraction data confirm the dopants’ integration into the cubic perovskite microstructure. At room temperature, the magnetization–magnetic field intensity hysteresis loops from vibrating sample magnetometer reveal the samples’ ferromagnetic character, with a maximum magnetization of 0.091 emu g−1 achieved for x = 15%. The real part of the initial permeability demonstrates that the replacement of Co2+ causes a shift in resonance toward higher frequencies above 85 MHz, indicating the potential of the synthesized ceramics for high‐frequency magnetic applications. The variation in dielectric characteristics from 100 Hz to 10 MHz is explained using electron hopping on octahedral sites and Maxwell–Wagner's model. The increase of AC conductivity in the high‐frequency region is consistent with the strengthening of the grain effect on the conduction mechanism, which supports the small‐range polaron‐hopping theory. The complex electric modulus's peak (M′′) shifts toward a higher‐frequency region with cobalt content, suggesting a reduction in the relaxation rate. The optical bandgap is observed to decrease from 3.08 to 2.96 eV with cobalt content. Cobalt doping improves the structural, morphological, magnetic, dielectric, electrical transport, and optical characteristics of (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.20) ceramics. At room temperature, the corresponding hysteresis loops (M–H) from vibrating sample magnetometer reveal the samples’ ferromagnetic character. The variation in dielectric characteristics from 100 Hz to 10 MHz suggests that the prepared ceramics may be used for high‐frequency multifunctional applications.
doi_str_mv 10.1002/pssa.202300008
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2834429390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834429390</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-ef391e33e95da7e01562b92c496337e60fcd55c7f93a10d7cfdfd8b0a0f7bc5e3</originalsourceid><addsrcrecordid>eNo9kctOwzAQRSMEEuWxZW2JDUg0jO28vCyhPKSiIhUkdpHr2MVVGhvb5fEHrPkLfosvIaWos5k5ozt3FjeKjjDEGICcW-95TIBQ6KrYinq4yEg_o5htb2aA3WjP-zlAkiY57kXfQ6WkCMgoVJopbwK6NFa3M2RaNAluKcLS8eYM3Rlnn01jZlr8IZ-1MmhxhoZNd-7WW97WaGzDCtC9M1a6oKVfeZ9ccIjziYOYnkLMirJDIA8a_3x-PZXmfUxRKR1faOGRMg5dylctJBpY23RuQZvWH0Q7ijdeHv73_ejxavhQ3vRH4-vbcjDqW0Jp0ZeKMiwplSyteS4BpxmZMiISllGaywyUqNNU5IpRjqHOhapVXUyBg8qnIpV0Pzpe-1pnXpbSh2pulq7tXlakoElCGGXQqdha9aYb-VFZpxfcfVQYqlUW1SqLapNFdT-ZDDZEfwHFw4A4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834429390</pqid></control><display><type>article</type><title>Effect of Cobalt Doping on Structural, Morphological, Magnetic, Electrical, and Optical Properties of (Ba0.7Sr0.3)0.98Ca0.02Ti1−XCoxO3 Ceramics for Device Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mahmud, Hasan ; Ahamed, Jamal Uddin ; Khan, Mohammed Nazrul Islam</creator><creatorcontrib>Mahmud, Hasan ; Ahamed, Jamal Uddin ; Khan, Mohammed Nazrul Islam</creatorcontrib><description>Considering the multifunctional performance, the (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.2) ceramics are successfully synthesized using the traditional solid‐phase reaction method. The effect of cobalt doping on the samples’ structural, morphological, magnetic, electrical, and optical characteristics is elucidated. Raman spectroscopy and X‐ray diffraction data confirm the dopants’ integration into the cubic perovskite microstructure. At room temperature, the magnetization–magnetic field intensity hysteresis loops from vibrating sample magnetometer reveal the samples’ ferromagnetic character, with a maximum magnetization of 0.091 emu g−1 achieved for x = 15%. The real part of the initial permeability demonstrates that the replacement of Co2+ causes a shift in resonance toward higher frequencies above 85 MHz, indicating the potential of the synthesized ceramics for high‐frequency magnetic applications. The variation in dielectric characteristics from 100 Hz to 10 MHz is explained using electron hopping on octahedral sites and Maxwell–Wagner's model. The increase of AC conductivity in the high‐frequency region is consistent with the strengthening of the grain effect on the conduction mechanism, which supports the small‐range polaron‐hopping theory. The complex electric modulus's peak (M′′) shifts toward a higher‐frequency region with cobalt content, suggesting a reduction in the relaxation rate. The optical bandgap is observed to decrease from 3.08 to 2.96 eV with cobalt content. Cobalt doping improves the structural, morphological, magnetic, dielectric, electrical transport, and optical characteristics of (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.20) ceramics. At room temperature, the corresponding hysteresis loops (M–H) from vibrating sample magnetometer reveal the samples’ ferromagnetic character. The variation in dielectric characteristics from 100 Hz to 10 MHz suggests that the prepared ceramics may be used for high‐frequency multifunctional applications.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300008</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ceramics ; Cobalt ; device applications ; Dielectric properties ; Doping ; electrical properties ; Ferromagnetism ; Hysteresis loops ; lead-free multifunctional ceramics ; Magnetic flux ; Magnetic properties ; Magnetization ; Magnetometers ; Morphology ; Optical properties ; Perovskites ; Raman spectroscopy ; Room temperature</subject><ispartof>Physica status solidi. A, Applications and materials science, 2023-07, Vol.220 (13), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6093-5380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202300008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202300008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mahmud, Hasan</creatorcontrib><creatorcontrib>Ahamed, Jamal Uddin</creatorcontrib><creatorcontrib>Khan, Mohammed Nazrul Islam</creatorcontrib><title>Effect of Cobalt Doping on Structural, Morphological, Magnetic, Electrical, and Optical Properties of (Ba0.7Sr0.3)0.98Ca0.02Ti1−XCoxO3 Ceramics for Device Applications</title><title>Physica status solidi. A, Applications and materials science</title><description>Considering the multifunctional performance, the (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.2) ceramics are successfully synthesized using the traditional solid‐phase reaction method. The effect of cobalt doping on the samples’ structural, morphological, magnetic, electrical, and optical characteristics is elucidated. Raman spectroscopy and X‐ray diffraction data confirm the dopants’ integration into the cubic perovskite microstructure. At room temperature, the magnetization–magnetic field intensity hysteresis loops from vibrating sample magnetometer reveal the samples’ ferromagnetic character, with a maximum magnetization of 0.091 emu g−1 achieved for x = 15%. The real part of the initial permeability demonstrates that the replacement of Co2+ causes a shift in resonance toward higher frequencies above 85 MHz, indicating the potential of the synthesized ceramics for high‐frequency magnetic applications. The variation in dielectric characteristics from 100 Hz to 10 MHz is explained using electron hopping on octahedral sites and Maxwell–Wagner's model. The increase of AC conductivity in the high‐frequency region is consistent with the strengthening of the grain effect on the conduction mechanism, which supports the small‐range polaron‐hopping theory. The complex electric modulus's peak (M′′) shifts toward a higher‐frequency region with cobalt content, suggesting a reduction in the relaxation rate. The optical bandgap is observed to decrease from 3.08 to 2.96 eV with cobalt content. Cobalt doping improves the structural, morphological, magnetic, dielectric, electrical transport, and optical characteristics of (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.20) ceramics. At room temperature, the corresponding hysteresis loops (M–H) from vibrating sample magnetometer reveal the samples’ ferromagnetic character. The variation in dielectric characteristics from 100 Hz to 10 MHz suggests that the prepared ceramics may be used for high‐frequency multifunctional applications.</description><subject>Ceramics</subject><subject>Cobalt</subject><subject>device applications</subject><subject>Dielectric properties</subject><subject>Doping</subject><subject>electrical properties</subject><subject>Ferromagnetism</subject><subject>Hysteresis loops</subject><subject>lead-free multifunctional ceramics</subject><subject>Magnetic flux</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Magnetometers</subject><subject>Morphology</subject><subject>Optical properties</subject><subject>Perovskites</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kctOwzAQRSMEEuWxZW2JDUg0jO28vCyhPKSiIhUkdpHr2MVVGhvb5fEHrPkLfosvIaWos5k5ozt3FjeKjjDEGICcW-95TIBQ6KrYinq4yEg_o5htb2aA3WjP-zlAkiY57kXfQ6WkCMgoVJopbwK6NFa3M2RaNAluKcLS8eYM3Rlnn01jZlr8IZ-1MmhxhoZNd-7WW97WaGzDCtC9M1a6oKVfeZ9ccIjziYOYnkLMirJDIA8a_3x-PZXmfUxRKR1faOGRMg5dylctJBpY23RuQZvWH0Q7ijdeHv73_ejxavhQ3vRH4-vbcjDqW0Jp0ZeKMiwplSyteS4BpxmZMiISllGaywyUqNNU5IpRjqHOhapVXUyBg8qnIpV0Pzpe-1pnXpbSh2pulq7tXlakoElCGGXQqdha9aYb-VFZpxfcfVQYqlUW1SqLapNFdT-ZDDZEfwHFw4A4</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Mahmud, Hasan</creator><creator>Ahamed, Jamal Uddin</creator><creator>Khan, Mohammed Nazrul Islam</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6093-5380</orcidid></search><sort><creationdate>202307</creationdate><title>Effect of Cobalt Doping on Structural, Morphological, Magnetic, Electrical, and Optical Properties of (Ba0.7Sr0.3)0.98Ca0.02Ti1−XCoxO3 Ceramics for Device Applications</title><author>Mahmud, Hasan ; Ahamed, Jamal Uddin ; Khan, Mohammed Nazrul Islam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-ef391e33e95da7e01562b92c496337e60fcd55c7f93a10d7cfdfd8b0a0f7bc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ceramics</topic><topic>Cobalt</topic><topic>device applications</topic><topic>Dielectric properties</topic><topic>Doping</topic><topic>electrical properties</topic><topic>Ferromagnetism</topic><topic>Hysteresis loops</topic><topic>lead-free multifunctional ceramics</topic><topic>Magnetic flux</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Magnetometers</topic><topic>Morphology</topic><topic>Optical properties</topic><topic>Perovskites</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmud, Hasan</creatorcontrib><creatorcontrib>Ahamed, Jamal Uddin</creatorcontrib><creatorcontrib>Khan, Mohammed Nazrul Islam</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmud, Hasan</au><au>Ahamed, Jamal Uddin</au><au>Khan, Mohammed Nazrul Islam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Cobalt Doping on Structural, Morphological, Magnetic, Electrical, and Optical Properties of (Ba0.7Sr0.3)0.98Ca0.02Ti1−XCoxO3 Ceramics for Device Applications</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2023-07</date><risdate>2023</risdate><volume>220</volume><issue>13</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Considering the multifunctional performance, the (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.2) ceramics are successfully synthesized using the traditional solid‐phase reaction method. The effect of cobalt doping on the samples’ structural, morphological, magnetic, electrical, and optical characteristics is elucidated. Raman spectroscopy and X‐ray diffraction data confirm the dopants’ integration into the cubic perovskite microstructure. At room temperature, the magnetization–magnetic field intensity hysteresis loops from vibrating sample magnetometer reveal the samples’ ferromagnetic character, with a maximum magnetization of 0.091 emu g−1 achieved for x = 15%. The real part of the initial permeability demonstrates that the replacement of Co2+ causes a shift in resonance toward higher frequencies above 85 MHz, indicating the potential of the synthesized ceramics for high‐frequency magnetic applications. The variation in dielectric characteristics from 100 Hz to 10 MHz is explained using electron hopping on octahedral sites and Maxwell–Wagner's model. The increase of AC conductivity in the high‐frequency region is consistent with the strengthening of the grain effect on the conduction mechanism, which supports the small‐range polaron‐hopping theory. The complex electric modulus's peak (M′′) shifts toward a higher‐frequency region with cobalt content, suggesting a reduction in the relaxation rate. The optical bandgap is observed to decrease from 3.08 to 2.96 eV with cobalt content. Cobalt doping improves the structural, morphological, magnetic, dielectric, electrical transport, and optical characteristics of (Ba0.7Sr0.3)0.98Ca0.02Ti1−xCoxO3 (x = 0.00–0.20) ceramics. At room temperature, the corresponding hysteresis loops (M–H) from vibrating sample magnetometer reveal the samples’ ferromagnetic character. The variation in dielectric characteristics from 100 Hz to 10 MHz suggests that the prepared ceramics may be used for high‐frequency multifunctional applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202300008</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6093-5380</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2023-07, Vol.220 (13), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2834429390
source Wiley Online Library Journals Frontfile Complete
subjects Ceramics
Cobalt
device applications
Dielectric properties
Doping
electrical properties
Ferromagnetism
Hysteresis loops
lead-free multifunctional ceramics
Magnetic flux
Magnetic properties
Magnetization
Magnetometers
Morphology
Optical properties
Perovskites
Raman spectroscopy
Room temperature
title Effect of Cobalt Doping on Structural, Morphological, Magnetic, Electrical, and Optical Properties of (Ba0.7Sr0.3)0.98Ca0.02Ti1−XCoxO3 Ceramics for Device Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Cobalt%20Doping%20on%20Structural,%20Morphological,%20Magnetic,%20Electrical,%20and%20Optical%20Properties%20of%20(Ba0.7Sr0.3)0.98Ca0.02Ti1%E2%88%92XCoxO3%20Ceramics%20for%20Device%20Applications&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Mahmud,%20Hasan&rft.date=2023-07&rft.volume=220&rft.issue=13&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300008&rft_dat=%3Cproquest_wiley%3E2834429390%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834429390&rft_id=info:pmid/&rfr_iscdi=true