Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers
This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overvi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Murungi, Nathan Koome Pham, Michael Vinh Dai, Xufeng Qu, Xiaodong |
description | This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overview of the BCI field, covering tasks, algorithms, and datasets. By synthesizing recent findings, our aim is to offer a fundamental understanding of BCI research, identifying promising avenues for future investigations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2834346894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834346894</sourcerecordid><originalsourceid>FETCH-proquest_journals_28343468943</originalsourceid><addsrcrecordid>eNqNzMEKgkAUheEhCJLyHS60qUVgM1rWLmKqRW3C1jLoNRW7U3e0Xj8XPUCrs_gO_0B4UqnlIg6lHAnfuToIArlayyhSnjAJI-UOKoKLycqKEM5omCq6g6EcdINZyxYpw2dpGntn84CZ1sf5FnZwxXeFHygsw41y5F7zzrTYg-srWYnsJmJYmMah_9uxmB50sj8tnmxfHbo2rW3H1FMqYxWqcBVvQvXf6wuYHURH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834346894</pqid></control><display><type>article</type><title>Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers</title><source>Free E- Journals</source><creator>Murungi, Nathan Koome ; Pham, Michael Vinh ; Dai, Xufeng ; Qu, Xiaodong</creator><creatorcontrib>Murungi, Nathan Koome ; Pham, Michael Vinh ; Dai, Xufeng ; Qu, Xiaodong</creatorcontrib><description>This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overview of the BCI field, covering tasks, algorithms, and datasets. By synthesizing recent findings, our aim is to offer a fundamental understanding of BCI research, identifying promising avenues for future investigations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Electroencephalography ; Human-computer interface ; Literature reviews ; Machine learning ; Trends</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Murungi, Nathan Koome</creatorcontrib><creatorcontrib>Pham, Michael Vinh</creatorcontrib><creatorcontrib>Dai, Xufeng</creatorcontrib><creatorcontrib>Qu, Xiaodong</creatorcontrib><title>Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers</title><title>arXiv.org</title><description>This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overview of the BCI field, covering tasks, algorithms, and datasets. By synthesizing recent findings, our aim is to offer a fundamental understanding of BCI research, identifying promising avenues for future investigations.</description><subject>Algorithms</subject><subject>Electroencephalography</subject><subject>Human-computer interface</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Trends</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzMEKgkAUheEhCJLyHS60qUVgM1rWLmKqRW3C1jLoNRW7U3e0Xj8XPUCrs_gO_0B4UqnlIg6lHAnfuToIArlayyhSnjAJI-UOKoKLycqKEM5omCq6g6EcdINZyxYpw2dpGntn84CZ1sf5FnZwxXeFHygsw41y5F7zzrTYg-srWYnsJmJYmMah_9uxmB50sj8tnmxfHbo2rW3H1FMqYxWqcBVvQvXf6wuYHURH</recordid><startdate>20230706</startdate><enddate>20230706</enddate><creator>Murungi, Nathan Koome</creator><creator>Pham, Michael Vinh</creator><creator>Dai, Xufeng</creator><creator>Qu, Xiaodong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230706</creationdate><title>Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers</title><author>Murungi, Nathan Koome ; Pham, Michael Vinh ; Dai, Xufeng ; Qu, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28343468943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Electroencephalography</topic><topic>Human-computer interface</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Trends</topic><toplevel>online_resources</toplevel><creatorcontrib>Murungi, Nathan Koome</creatorcontrib><creatorcontrib>Pham, Michael Vinh</creatorcontrib><creatorcontrib>Dai, Xufeng</creatorcontrib><creatorcontrib>Qu, Xiaodong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murungi, Nathan Koome</au><au>Pham, Michael Vinh</au><au>Dai, Xufeng</au><au>Qu, Xiaodong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers</atitle><jtitle>arXiv.org</jtitle><date>2023-07-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overview of the BCI field, covering tasks, algorithms, and datasets. By synthesizing recent findings, our aim is to offer a fundamental understanding of BCI research, identifying promising avenues for future investigations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2834346894 |
source | Free E- Journals |
subjects | Algorithms Electroencephalography Human-computer interface Literature reviews Machine learning Trends |
title | Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Trends%20in%20Machine%20Learning%20and%20Electroencephalogram%20(EEG):%20A%20Review%20for%20Undergraduate%20Researchers&rft.jtitle=arXiv.org&rft.au=Murungi,%20Nathan%20Koome&rft.date=2023-07-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2834346894%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834346894&rft_id=info:pmid/&rfr_iscdi=true |