Multi-gauge Hydrological Variational Data Assimilation: Regionalization Learning with Spatial Gradients using Multilayer Perceptron and Bayesian-Guided Multivariate Regression
Tackling the difficult problem of estimating spatially distributed hydrological parameters, especially for floods on ungauged watercourses, this contribution presents a novel seamless regionalization technique for learning complex regional transfer functions designed for high-resolution hydrological...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ngo Nghi Truyen Huynh Pierre-André Garambois Colleoni, François Renard, Benjamin Roux, Hélène |
description | Tackling the difficult problem of estimating spatially distributed hydrological parameters, especially for floods on ungauged watercourses, this contribution presents a novel seamless regionalization technique for learning complex regional transfer functions designed for high-resolution hydrological models. The transfer functions rely on: (i) a multilayer perceptron enabling a seamless flow of gradient computation to employ machine learning optimization algorithms, or (ii) a multivariate regression mapping optimized by variational data assimilation algorithms and guided by Bayesian estimation, addressing the equifinality issue of feasible solutions. The approach involves incorporating the inferable regionalization mappings into a differentiable hydrological model and optimizing a cost function computed on multi-gauge data with accurate adjoint-based spatially distributed gradients. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2834345630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834345630</sourcerecordid><originalsourceid>FETCH-proquest_journals_28343456303</originalsourceid><addsrcrecordid>eNqNjt1KAzEQhRdBsGjfYcDrhTXZrcU7f9sLBVHxtgzNGKfEZM0kSn0pX9E0-gBezfCdczhnr5korU_aea_UQTMV2XRdp2anahj0pPm-yy5xazFbguXWxOCC5TU6eMbImDj48l9hQjgX4Td2lZ3BA9mq8VcFcEsYPXsLn5xe4XEstAQXEQ2TTwJZdmJtc7ilCPcU1zSmWLLoDVwUKIy-XWQ2ZH6dH3UD7coilfrgj5r9F3RC07972BzfXD9dLtsxhvdMklabkGPZJSs1173uh5nu9P9cP9y_Y60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834345630</pqid></control><display><type>article</type><title>Multi-gauge Hydrological Variational Data Assimilation: Regionalization Learning with Spatial Gradients using Multilayer Perceptron and Bayesian-Guided Multivariate Regression</title><source>Freely Accessible Journals</source><creator>Ngo Nghi Truyen Huynh ; Pierre-André Garambois ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène</creator><creatorcontrib>Ngo Nghi Truyen Huynh ; Pierre-André Garambois ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène</creatorcontrib><description>Tackling the difficult problem of estimating spatially distributed hydrological parameters, especially for floods on ungauged watercourses, this contribution presents a novel seamless regionalization technique for learning complex regional transfer functions designed for high-resolution hydrological models. The transfer functions rely on: (i) a multilayer perceptron enabling a seamless flow of gradient computation to employ machine learning optimization algorithms, or (ii) a multivariate regression mapping optimized by variational data assimilation algorithms and guided by Bayesian estimation, addressing the equifinality issue of feasible solutions. The approach involves incorporating the inferable regionalization mappings into a differentiable hydrological model and optimizing a cost function computed on multi-gauge data with accurate adjoint-based spatially distributed gradients.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Cost function ; Estimation ; Hydrologic models ; Hydrology ; Machine learning ; Multilayer perceptrons ; Multivariate analysis ; Optimization ; Transfer functions ; Watercourses</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Ngo Nghi Truyen Huynh</creatorcontrib><creatorcontrib>Pierre-André Garambois</creatorcontrib><creatorcontrib>Colleoni, François</creatorcontrib><creatorcontrib>Renard, Benjamin</creatorcontrib><creatorcontrib>Roux, Hélène</creatorcontrib><title>Multi-gauge Hydrological Variational Data Assimilation: Regionalization Learning with Spatial Gradients using Multilayer Perceptron and Bayesian-Guided Multivariate Regression</title><title>arXiv.org</title><description>Tackling the difficult problem of estimating spatially distributed hydrological parameters, especially for floods on ungauged watercourses, this contribution presents a novel seamless regionalization technique for learning complex regional transfer functions designed for high-resolution hydrological models. The transfer functions rely on: (i) a multilayer perceptron enabling a seamless flow of gradient computation to employ machine learning optimization algorithms, or (ii) a multivariate regression mapping optimized by variational data assimilation algorithms and guided by Bayesian estimation, addressing the equifinality issue of feasible solutions. The approach involves incorporating the inferable regionalization mappings into a differentiable hydrological model and optimizing a cost function computed on multi-gauge data with accurate adjoint-based spatially distributed gradients.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Cost function</subject><subject>Estimation</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Multivariate analysis</subject><subject>Optimization</subject><subject>Transfer functions</subject><subject>Watercourses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjt1KAzEQhRdBsGjfYcDrhTXZrcU7f9sLBVHxtgzNGKfEZM0kSn0pX9E0-gBezfCdczhnr5korU_aea_UQTMV2XRdp2anahj0pPm-yy5xazFbguXWxOCC5TU6eMbImDj48l9hQjgX4Td2lZ3BA9mq8VcFcEsYPXsLn5xe4XEstAQXEQ2TTwJZdmJtc7ilCPcU1zSmWLLoDVwUKIy-XWQ2ZH6dH3UD7coilfrgj5r9F3RC07972BzfXD9dLtsxhvdMklabkGPZJSs1173uh5nu9P9cP9y_Y60</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Ngo Nghi Truyen Huynh</creator><creator>Pierre-André Garambois</creator><creator>Colleoni, François</creator><creator>Renard, Benjamin</creator><creator>Roux, Hélène</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230704</creationdate><title>Multi-gauge Hydrological Variational Data Assimilation: Regionalization Learning with Spatial Gradients using Multilayer Perceptron and Bayesian-Guided Multivariate Regression</title><author>Ngo Nghi Truyen Huynh ; Pierre-André Garambois ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28343456303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Cost function</topic><topic>Estimation</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Multivariate analysis</topic><topic>Optimization</topic><topic>Transfer functions</topic><topic>Watercourses</topic><toplevel>online_resources</toplevel><creatorcontrib>Ngo Nghi Truyen Huynh</creatorcontrib><creatorcontrib>Pierre-André Garambois</creatorcontrib><creatorcontrib>Colleoni, François</creatorcontrib><creatorcontrib>Renard, Benjamin</creatorcontrib><creatorcontrib>Roux, Hélène</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngo Nghi Truyen Huynh</au><au>Pierre-André Garambois</au><au>Colleoni, François</au><au>Renard, Benjamin</au><au>Roux, Hélène</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-gauge Hydrological Variational Data Assimilation: Regionalization Learning with Spatial Gradients using Multilayer Perceptron and Bayesian-Guided Multivariate Regression</atitle><jtitle>arXiv.org</jtitle><date>2023-07-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Tackling the difficult problem of estimating spatially distributed hydrological parameters, especially for floods on ungauged watercourses, this contribution presents a novel seamless regionalization technique for learning complex regional transfer functions designed for high-resolution hydrological models. The transfer functions rely on: (i) a multilayer perceptron enabling a seamless flow of gradient computation to employ machine learning optimization algorithms, or (ii) a multivariate regression mapping optimized by variational data assimilation algorithms and guided by Bayesian estimation, addressing the equifinality issue of feasible solutions. The approach involves incorporating the inferable regionalization mappings into a differentiable hydrological model and optimizing a cost function computed on multi-gauge data with accurate adjoint-based spatially distributed gradients.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2834345630 |
source | Freely Accessible Journals |
subjects | Algorithms Bayesian analysis Cost function Estimation Hydrologic models Hydrology Machine learning Multilayer perceptrons Multivariate analysis Optimization Transfer functions Watercourses |
title | Multi-gauge Hydrological Variational Data Assimilation: Regionalization Learning with Spatial Gradients using Multilayer Perceptron and Bayesian-Guided Multivariate Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-gauge%20Hydrological%20Variational%20Data%20Assimilation:%20Regionalization%20Learning%20with%20Spatial%20Gradients%20using%20Multilayer%20Perceptron%20and%20Bayesian-Guided%20Multivariate%20Regression&rft.jtitle=arXiv.org&rft.au=Ngo%20Nghi%20Truyen%20Huynh&rft.date=2023-07-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2834345630%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834345630&rft_id=info:pmid/&rfr_iscdi=true |