Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology

We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2023-05, Vol.13 (5), p.646-654
Hauptverfasser: Zou, Dingsen, Hong, Jiaqi, Zhao, Shikai, Chen, Jeffrey, Wu, Hao, Hu, Kaixiang, Ma, Guoqiang, Chen, Yizhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 654
container_issue 5
container_start_page 646
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 13
creator Zou, Dingsen
Hong, Jiaqi
Zhao, Shikai
Chen, Jeffrey
Wu, Hao
Hu, Kaixiang
Ma, Guoqiang
Chen, Yizhan
description We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated by the print-wick-structuring (PWS) combo technology. We screen print several types of paste on the copper-etched sheet to form the specific wick structures, which greatly influences the heat transfer performance. Thus, the limitation of the traditional copper mesh wick technology in two-phase flow transportation and circulation in a large area and ultranarrow space is solved. The wick structures formed at the sintering temperature of 780 °C enable the working fluid to flow through a 60-mm path in 6 s. The test results show that the UTVC can transfer a heat load of up to 5 W and the temperature difference between the evaporator and condenser can be controlled to 2.5 °C so that the thermal resistance can reach 0.5 °C/W. In addition, the manufacturing process introduced in this article makes the UTVC feasible for mass production.
doi_str_mv 10.1109/TCPMT.2023.3276789
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2834308311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834308311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-1852a7addda221fc33830a5aae6501ec2851295e29fe03bddfe43b47cf0e74573</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpC3CyxDnFP3HiHEuggFREJVI4WhvHSV3auNjJoW9PSivmsqPR7K70IXRLyZRSkt0X-fKtmDLC-JSzNElldoFGjIok4pkUl_9ekGs0CWFDBglJUsJHyD6aYJsWQ1vhOZTeauisa7GrMeAF-MbgmTeAV9vOQ7e2Lf6EvfM4X8OuNB4_QDAVHhaW3rZd9GX1d_TR-V53_RA0uDB63bqtaw436KqGbTCT8xyj1fypyF-ixfvzaz5bRJqxpIuoFAxSqKoKGKO15lxyAgLAJIJQo5kUlGXCsKw2hJdVVZuYl3Gqa2LSWKR8jO5Od_fe_fQmdGrjet8OLxWTPOZEckqHFju1tHcheFOrvbc78AdFiTpSVX9U1ZGqOlPlv8sXaqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834308311</pqid></control><display><type>article</type><title>Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Dingsen ; Hong, Jiaqi ; Zhao, Shikai ; Chen, Jeffrey ; Wu, Hao ; Hu, Kaixiang ; Ma, Guoqiang ; Chen, Yizhan</creator><creatorcontrib>Zou, Dingsen ; Hong, Jiaqi ; Zhao, Shikai ; Chen, Jeffrey ; Wu, Hao ; Hu, Kaixiang ; Ma, Guoqiang ; Chen, Yizhan</creatorcontrib><description>We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated by the print-wick-structuring (PWS) combo technology. We screen print several types of paste on the copper-etched sheet to form the specific wick structures, which greatly influences the heat transfer performance. Thus, the limitation of the traditional copper mesh wick technology in two-phase flow transportation and circulation in a large area and ultranarrow space is solved. The wick structures formed at the sintering temperature of 780 °C enable the working fluid to flow through a 60-mm path in 6 s. The test results show that the UTVC can transfer a heat load of up to 5 W and the temperature difference between the evaporator and condenser can be controlled to 2.5 °C so that the thermal resistance can reach 0.5 °C/W. In addition, the manufacturing process introduced in this article makes the UTVC feasible for mass production.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2023.3276789</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Chambers ; Copper ; Evaporators ; Heat transfer ; Mass production ; Temperature gradients ; Thermal resistance ; Thickness ; Two phase flow ; Working fluids</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2023-05, Vol.13 (5), p.646-654</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-1852a7addda221fc33830a5aae6501ec2851295e29fe03bddfe43b47cf0e74573</cites><orcidid>0000-0003-1574-3352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zou, Dingsen</creatorcontrib><creatorcontrib>Hong, Jiaqi</creatorcontrib><creatorcontrib>Zhao, Shikai</creatorcontrib><creatorcontrib>Chen, Jeffrey</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Hu, Kaixiang</creatorcontrib><creatorcontrib>Ma, Guoqiang</creatorcontrib><creatorcontrib>Chen, Yizhan</creatorcontrib><title>Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><description>We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated by the print-wick-structuring (PWS) combo technology. We screen print several types of paste on the copper-etched sheet to form the specific wick structures, which greatly influences the heat transfer performance. Thus, the limitation of the traditional copper mesh wick technology in two-phase flow transportation and circulation in a large area and ultranarrow space is solved. The wick structures formed at the sintering temperature of 780 °C enable the working fluid to flow through a 60-mm path in 6 s. The test results show that the UTVC can transfer a heat load of up to 5 W and the temperature difference between the evaporator and condenser can be controlled to 2.5 °C so that the thermal resistance can reach 0.5 °C/W. In addition, the manufacturing process introduced in this article makes the UTVC feasible for mass production.</description><subject>Chambers</subject><subject>Copper</subject><subject>Evaporators</subject><subject>Heat transfer</subject><subject>Mass production</subject><subject>Temperature gradients</subject><subject>Thermal resistance</subject><subject>Thickness</subject><subject>Two phase flow</subject><subject>Working fluids</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpC3CyxDnFP3HiHEuggFREJVI4WhvHSV3auNjJoW9PSivmsqPR7K70IXRLyZRSkt0X-fKtmDLC-JSzNElldoFGjIok4pkUl_9ekGs0CWFDBglJUsJHyD6aYJsWQ1vhOZTeauisa7GrMeAF-MbgmTeAV9vOQ7e2Lf6EvfM4X8OuNB4_QDAVHhaW3rZd9GX1d_TR-V53_RA0uDB63bqtaw436KqGbTCT8xyj1fypyF-ixfvzaz5bRJqxpIuoFAxSqKoKGKO15lxyAgLAJIJQo5kUlGXCsKw2hJdVVZuYl3Gqa2LSWKR8jO5Od_fe_fQmdGrjet8OLxWTPOZEckqHFju1tHcheFOrvbc78AdFiTpSVX9U1ZGqOlPlv8sXaqg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zou, Dingsen</creator><creator>Hong, Jiaqi</creator><creator>Zhao, Shikai</creator><creator>Chen, Jeffrey</creator><creator>Wu, Hao</creator><creator>Hu, Kaixiang</creator><creator>Ma, Guoqiang</creator><creator>Chen, Yizhan</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1574-3352</orcidid></search><sort><creationdate>20230501</creationdate><title>Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology</title><author>Zou, Dingsen ; Hong, Jiaqi ; Zhao, Shikai ; Chen, Jeffrey ; Wu, Hao ; Hu, Kaixiang ; Ma, Guoqiang ; Chen, Yizhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-1852a7addda221fc33830a5aae6501ec2851295e29fe03bddfe43b47cf0e74573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chambers</topic><topic>Copper</topic><topic>Evaporators</topic><topic>Heat transfer</topic><topic>Mass production</topic><topic>Temperature gradients</topic><topic>Thermal resistance</topic><topic>Thickness</topic><topic>Two phase flow</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Dingsen</creatorcontrib><creatorcontrib>Hong, Jiaqi</creatorcontrib><creatorcontrib>Zhao, Shikai</creatorcontrib><creatorcontrib>Chen, Jeffrey</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Hu, Kaixiang</creatorcontrib><creatorcontrib>Ma, Guoqiang</creatorcontrib><creatorcontrib>Chen, Yizhan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Dingsen</au><au>Hong, Jiaqi</au><au>Zhao, Shikai</au><au>Chen, Jeffrey</au><au>Wu, Hao</au><au>Hu, Kaixiang</au><au>Ma, Guoqiang</au><au>Chen, Yizhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>646</spage><epage>654</epage><pages>646-654</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><abstract>We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated by the print-wick-structuring (PWS) combo technology. We screen print several types of paste on the copper-etched sheet to form the specific wick structures, which greatly influences the heat transfer performance. Thus, the limitation of the traditional copper mesh wick technology in two-phase flow transportation and circulation in a large area and ultranarrow space is solved. The wick structures formed at the sintering temperature of 780 °C enable the working fluid to flow through a 60-mm path in 6 s. The test results show that the UTVC can transfer a heat load of up to 5 W and the temperature difference between the evaporator and condenser can be controlled to 2.5 °C so that the thermal resistance can reach 0.5 °C/W. In addition, the manufacturing process introduced in this article makes the UTVC feasible for mass production.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TCPMT.2023.3276789</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1574-3352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2023-05, Vol.13 (5), p.646-654
issn 2156-3950
2156-3985
language eng
recordid cdi_proquest_journals_2834308311
source IEEE Electronic Library (IEL)
subjects Chambers
Copper
Evaporators
Heat transfer
Mass production
Temperature gradients
Thermal resistance
Thickness
Two phase flow
Working fluids
title Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Fabrication%20of%20a%20Large%20Area%20Ultrathin%20Vapor%20Chamber%20Based%20on%20Print-Wick-Structuring%20Technology&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Zou,%20Dingsen&rft.date=2023-05-01&rft.volume=13&rft.issue=5&rft.spage=646&rft.epage=654&rft.pages=646-654&rft.issn=2156-3950&rft.eissn=2156-3985&rft_id=info:doi/10.1109/TCPMT.2023.3276789&rft_dat=%3Cproquest_cross%3E2834308311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834308311&rft_id=info:pmid/&rfr_iscdi=true