Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology
We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2023-05, Vol.13 (5), p.646-654 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 654 |
---|---|
container_issue | 5 |
container_start_page | 646 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 13 |
creator | Zou, Dingsen Hong, Jiaqi Zhao, Shikai Chen, Jeffrey Wu, Hao Hu, Kaixiang Ma, Guoqiang Chen, Yizhan |
description | We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated by the print-wick-structuring (PWS) combo technology. We screen print several types of paste on the copper-etched sheet to form the specific wick structures, which greatly influences the heat transfer performance. Thus, the limitation of the traditional copper mesh wick technology in two-phase flow transportation and circulation in a large area and ultranarrow space is solved. The wick structures formed at the sintering temperature of 780 °C enable the working fluid to flow through a 60-mm path in 6 s. The test results show that the UTVC can transfer a heat load of up to 5 W and the temperature difference between the evaporator and condenser can be controlled to 2.5 °C so that the thermal resistance can reach 0.5 °C/W. In addition, the manufacturing process introduced in this article makes the UTVC feasible for mass production. |
doi_str_mv | 10.1109/TCPMT.2023.3276789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2834308311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834308311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-1852a7addda221fc33830a5aae6501ec2851295e29fe03bddfe43b47cf0e74573</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpC3CyxDnFP3HiHEuggFREJVI4WhvHSV3auNjJoW9PSivmsqPR7K70IXRLyZRSkt0X-fKtmDLC-JSzNElldoFGjIok4pkUl_9ekGs0CWFDBglJUsJHyD6aYJsWQ1vhOZTeauisa7GrMeAF-MbgmTeAV9vOQ7e2Lf6EvfM4X8OuNB4_QDAVHhaW3rZd9GX1d_TR-V53_RA0uDB63bqtaw436KqGbTCT8xyj1fypyF-ixfvzaz5bRJqxpIuoFAxSqKoKGKO15lxyAgLAJIJQo5kUlGXCsKw2hJdVVZuYl3Gqa2LSWKR8jO5Od_fe_fQmdGrjet8OLxWTPOZEckqHFju1tHcheFOrvbc78AdFiTpSVX9U1ZGqOlPlv8sXaqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834308311</pqid></control><display><type>article</type><title>Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Dingsen ; Hong, Jiaqi ; Zhao, Shikai ; Chen, Jeffrey ; Wu, Hao ; Hu, Kaixiang ; Ma, Guoqiang ; Chen, Yizhan</creator><creatorcontrib>Zou, Dingsen ; Hong, Jiaqi ; Zhao, Shikai ; Chen, Jeffrey ; Wu, Hao ; Hu, Kaixiang ; Ma, Guoqiang ; Chen, Yizhan</creatorcontrib><description>We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated by the print-wick-structuring (PWS) combo technology. We screen print several types of paste on the copper-etched sheet to form the specific wick structures, which greatly influences the heat transfer performance. Thus, the limitation of the traditional copper mesh wick technology in two-phase flow transportation and circulation in a large area and ultranarrow space is solved. The wick structures formed at the sintering temperature of 780 °C enable the working fluid to flow through a 60-mm path in 6 s. The test results show that the UTVC can transfer a heat load of up to 5 W and the temperature difference between the evaporator and condenser can be controlled to 2.5 °C so that the thermal resistance can reach 0.5 °C/W. In addition, the manufacturing process introduced in this article makes the UTVC feasible for mass production.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2023.3276789</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Chambers ; Copper ; Evaporators ; Heat transfer ; Mass production ; Temperature gradients ; Thermal resistance ; Thickness ; Two phase flow ; Working fluids</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2023-05, Vol.13 (5), p.646-654</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-1852a7addda221fc33830a5aae6501ec2851295e29fe03bddfe43b47cf0e74573</cites><orcidid>0000-0003-1574-3352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zou, Dingsen</creatorcontrib><creatorcontrib>Hong, Jiaqi</creatorcontrib><creatorcontrib>Zhao, Shikai</creatorcontrib><creatorcontrib>Chen, Jeffrey</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Hu, Kaixiang</creatorcontrib><creatorcontrib>Ma, Guoqiang</creatorcontrib><creatorcontrib>Chen, Yizhan</creatorcontrib><title>Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><description>We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated by the print-wick-structuring (PWS) combo technology. We screen print several types of paste on the copper-etched sheet to form the specific wick structures, which greatly influences the heat transfer performance. Thus, the limitation of the traditional copper mesh wick technology in two-phase flow transportation and circulation in a large area and ultranarrow space is solved. The wick structures formed at the sintering temperature of 780 °C enable the working fluid to flow through a 60-mm path in 6 s. The test results show that the UTVC can transfer a heat load of up to 5 W and the temperature difference between the evaporator and condenser can be controlled to 2.5 °C so that the thermal resistance can reach 0.5 °C/W. In addition, the manufacturing process introduced in this article makes the UTVC feasible for mass production.</description><subject>Chambers</subject><subject>Copper</subject><subject>Evaporators</subject><subject>Heat transfer</subject><subject>Mass production</subject><subject>Temperature gradients</subject><subject>Thermal resistance</subject><subject>Thickness</subject><subject>Two phase flow</subject><subject>Working fluids</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpC3CyxDnFP3HiHEuggFREJVI4WhvHSV3auNjJoW9PSivmsqPR7K70IXRLyZRSkt0X-fKtmDLC-JSzNElldoFGjIok4pkUl_9ekGs0CWFDBglJUsJHyD6aYJsWQ1vhOZTeauisa7GrMeAF-MbgmTeAV9vOQ7e2Lf6EvfM4X8OuNB4_QDAVHhaW3rZd9GX1d_TR-V53_RA0uDB63bqtaw436KqGbTCT8xyj1fypyF-ixfvzaz5bRJqxpIuoFAxSqKoKGKO15lxyAgLAJIJQo5kUlGXCsKw2hJdVVZuYl3Gqa2LSWKR8jO5Od_fe_fQmdGrjet8OLxWTPOZEckqHFju1tHcheFOrvbc78AdFiTpSVX9U1ZGqOlPlv8sXaqg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zou, Dingsen</creator><creator>Hong, Jiaqi</creator><creator>Zhao, Shikai</creator><creator>Chen, Jeffrey</creator><creator>Wu, Hao</creator><creator>Hu, Kaixiang</creator><creator>Ma, Guoqiang</creator><creator>Chen, Yizhan</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1574-3352</orcidid></search><sort><creationdate>20230501</creationdate><title>Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology</title><author>Zou, Dingsen ; Hong, Jiaqi ; Zhao, Shikai ; Chen, Jeffrey ; Wu, Hao ; Hu, Kaixiang ; Ma, Guoqiang ; Chen, Yizhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-1852a7addda221fc33830a5aae6501ec2851295e29fe03bddfe43b47cf0e74573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chambers</topic><topic>Copper</topic><topic>Evaporators</topic><topic>Heat transfer</topic><topic>Mass production</topic><topic>Temperature gradients</topic><topic>Thermal resistance</topic><topic>Thickness</topic><topic>Two phase flow</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Dingsen</creatorcontrib><creatorcontrib>Hong, Jiaqi</creatorcontrib><creatorcontrib>Zhao, Shikai</creatorcontrib><creatorcontrib>Chen, Jeffrey</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Hu, Kaixiang</creatorcontrib><creatorcontrib>Ma, Guoqiang</creatorcontrib><creatorcontrib>Chen, Yizhan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Dingsen</au><au>Hong, Jiaqi</au><au>Zhao, Shikai</au><au>Chen, Jeffrey</au><au>Wu, Hao</au><au>Hu, Kaixiang</au><au>Ma, Guoqiang</au><au>Chen, Yizhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>646</spage><epage>654</epage><pages>646-654</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><abstract>We explore a large area ultrathin vapor chamber (UTVC) with special wick structures. At present, the thickness of the UTVC applied to mobile electronic devices is usually above 0.3 mm. In this article, the UTVC with a thickness of 0.2 mm and an area of more than 5000 mm2 is designed and fabricated by the print-wick-structuring (PWS) combo technology. We screen print several types of paste on the copper-etched sheet to form the specific wick structures, which greatly influences the heat transfer performance. Thus, the limitation of the traditional copper mesh wick technology in two-phase flow transportation and circulation in a large area and ultranarrow space is solved. The wick structures formed at the sintering temperature of 780 °C enable the working fluid to flow through a 60-mm path in 6 s. The test results show that the UTVC can transfer a heat load of up to 5 W and the temperature difference between the evaporator and condenser can be controlled to 2.5 °C so that the thermal resistance can reach 0.5 °C/W. In addition, the manufacturing process introduced in this article makes the UTVC feasible for mass production.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TCPMT.2023.3276789</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1574-3352</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2023-05, Vol.13 (5), p.646-654 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_proquest_journals_2834308311 |
source | IEEE Electronic Library (IEL) |
subjects | Chambers Copper Evaporators Heat transfer Mass production Temperature gradients Thermal resistance Thickness Two phase flow Working fluids |
title | Design and Fabrication of a Large Area Ultrathin Vapor Chamber Based on Print-Wick-Structuring Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Fabrication%20of%20a%20Large%20Area%20Ultrathin%20Vapor%20Chamber%20Based%20on%20Print-Wick-Structuring%20Technology&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Zou,%20Dingsen&rft.date=2023-05-01&rft.volume=13&rft.issue=5&rft.spage=646&rft.epage=654&rft.pages=646-654&rft.issn=2156-3950&rft.eissn=2156-3985&rft_id=info:doi/10.1109/TCPMT.2023.3276789&rft_dat=%3Cproquest_cross%3E2834308311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834308311&rft_id=info:pmid/&rfr_iscdi=true |