Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization

Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-08, Vol.35 (8), p.8126-8142
Hauptverfasser: Cui, Guosheng, Wang, Ruxin, Wu, Dan, Li, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8142
container_issue 8
container_start_page 8126
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Cui, Guosheng
Wang, Ruxin
Wu, Dan
Li, Ye
description Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .
doi_str_mv 10.1109/TKDE.2022.3202561
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2834306435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9869733</ieee_id><sourcerecordid>2834306435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhYMoWKs_QNwEXKfOKzOTZalai1VBW9w5TNKbdEoedWaitL_ehBY355zFOffCFwTXGI0wRsnd4vn-YUQQISPaaczxSTDAcSwjghN82mXEcMQoE-fBhXMbhJAUEg-Cr1mdNdW2BA_hS1t682PgN5yUrfNgTV2ES9fra2MrXZp9n8elKeoKah9-eKs9FLvw0_h1OLV6uw7foWhLbc1ee9PUl8FZrksHV0cfBsvHh8XkKZq_TWeT8TzKSEJ9BJQRTkWc5zrlAiikCRIEINeCEpA5RYKlWGquM6FFnmaZXlHGs1gmq1gITofB7eHu1jbfLTivNk1r6-6lIpIyijijcdfCh1ZmG-cs5GprTaXtTmGkeoyqx6h6jOqIsdvcHDYGAP77ieSJoJT-AWU8cBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834306435</pqid></control><display><type>article</type><title>Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Guosheng ; Wang, Ruxin ; Wu, Dan ; Li, Ye</creator><creatorcontrib>Cui, Guosheng ; Wang, Ruxin ; Wu, Dan ; Li, Ye</creatorcontrib><description>Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3202561</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alignment ; Centroids ; Clustering ; Convergence ; Factorization ; Feature alignment ; incomplete multiview ; Linear programming ; Mathematical analysis ; Matrix decomposition ; Microwave integrated circuits ; normalizing strategy ; Optimization ; pairwise co-regularization ; Predictive models ; Regularization ; Source code ; Task analysis ; Vector spaces</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-08, Vol.35 (8), p.8126-8142</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763</citedby><cites>FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763</cites><orcidid>0000-0003-4772-3284 ; 0000-0001-5838-0198 ; 0000-0002-5351-8546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9869733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9869733$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Guosheng</creatorcontrib><creatorcontrib>Wang, Ruxin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><title>Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Centroids</subject><subject>Clustering</subject><subject>Convergence</subject><subject>Factorization</subject><subject>Feature alignment</subject><subject>incomplete multiview</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Microwave integrated circuits</subject><subject>normalizing strategy</subject><subject>Optimization</subject><subject>pairwise co-regularization</subject><subject>Predictive models</subject><subject>Regularization</subject><subject>Source code</subject><subject>Task analysis</subject><subject>Vector spaces</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhYMoWKs_QNwEXKfOKzOTZalai1VBW9w5TNKbdEoedWaitL_ehBY355zFOffCFwTXGI0wRsnd4vn-YUQQISPaaczxSTDAcSwjghN82mXEcMQoE-fBhXMbhJAUEg-Cr1mdNdW2BA_hS1t682PgN5yUrfNgTV2ES9fra2MrXZp9n8elKeoKah9-eKs9FLvw0_h1OLV6uw7foWhLbc1ee9PUl8FZrksHV0cfBsvHh8XkKZq_TWeT8TzKSEJ9BJQRTkWc5zrlAiikCRIEINeCEpA5RYKlWGquM6FFnmaZXlHGs1gmq1gITofB7eHu1jbfLTivNk1r6-6lIpIyijijcdfCh1ZmG-cs5GprTaXtTmGkeoyqx6h6jOqIsdvcHDYGAP77ieSJoJT-AWU8cBM</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Cui, Guosheng</creator><creator>Wang, Ruxin</creator><creator>Wu, Dan</creator><creator>Li, Ye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4772-3284</orcidid><orcidid>https://orcid.org/0000-0001-5838-0198</orcidid><orcidid>https://orcid.org/0000-0002-5351-8546</orcidid></search><sort><creationdate>20230801</creationdate><title>Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization</title><author>Cui, Guosheng ; Wang, Ruxin ; Wu, Dan ; Li, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Centroids</topic><topic>Clustering</topic><topic>Convergence</topic><topic>Factorization</topic><topic>Feature alignment</topic><topic>incomplete multiview</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Microwave integrated circuits</topic><topic>normalizing strategy</topic><topic>Optimization</topic><topic>pairwise co-regularization</topic><topic>Predictive models</topic><topic>Regularization</topic><topic>Source code</topic><topic>Task analysis</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Guosheng</creatorcontrib><creatorcontrib>Wang, Ruxin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Guosheng</au><au>Wang, Ruxin</au><au>Wu, Dan</au><au>Li, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>8</issue><spage>8126</spage><epage>8142</epage><pages>8126-8142</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3202561</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4772-3284</orcidid><orcidid>https://orcid.org/0000-0001-5838-0198</orcidid><orcidid>https://orcid.org/0000-0002-5351-8546</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-08, Vol.35 (8), p.8126-8142
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2834306435
source IEEE Electronic Library (IEL)
subjects Algorithms
Alignment
Centroids
Clustering
Convergence
Factorization
Feature alignment
incomplete multiview
Linear programming
Mathematical analysis
Matrix decomposition
Microwave integrated circuits
normalizing strategy
Optimization
pairwise co-regularization
Predictive models
Regularization
Source code
Task analysis
Vector spaces
title Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incomplete%20Multiview%20Clustering%20Using%20Normalizing%20Alignment%20Strategy%20With%20Graph%20Regularization&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Cui,%20Guosheng&rft.date=2023-08-01&rft.volume=35&rft.issue=8&rft.spage=8126&rft.epage=8142&rft.pages=8126-8142&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3202561&rft_dat=%3Cproquest_RIE%3E2834306435%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834306435&rft_id=info:pmid/&rft_ieee_id=9869733&rfr_iscdi=true