Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization
Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-08, Vol.35 (8), p.8126-8142 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8142 |
---|---|
container_issue | 8 |
container_start_page | 8126 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Cui, Guosheng Wang, Ruxin Wu, Dan Li, Ye |
description | Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS . |
doi_str_mv | 10.1109/TKDE.2022.3202561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2834306435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9869733</ieee_id><sourcerecordid>2834306435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhYMoWKs_QNwEXKfOKzOTZalai1VBW9w5TNKbdEoedWaitL_ehBY355zFOffCFwTXGI0wRsnd4vn-YUQQISPaaczxSTDAcSwjghN82mXEcMQoE-fBhXMbhJAUEg-Cr1mdNdW2BA_hS1t682PgN5yUrfNgTV2ES9fra2MrXZp9n8elKeoKah9-eKs9FLvw0_h1OLV6uw7foWhLbc1ee9PUl8FZrksHV0cfBsvHh8XkKZq_TWeT8TzKSEJ9BJQRTkWc5zrlAiikCRIEINeCEpA5RYKlWGquM6FFnmaZXlHGs1gmq1gITofB7eHu1jbfLTivNk1r6-6lIpIyijijcdfCh1ZmG-cs5GprTaXtTmGkeoyqx6h6jOqIsdvcHDYGAP77ieSJoJT-AWU8cBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834306435</pqid></control><display><type>article</type><title>Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Guosheng ; Wang, Ruxin ; Wu, Dan ; Li, Ye</creator><creatorcontrib>Cui, Guosheng ; Wang, Ruxin ; Wu, Dan ; Li, Ye</creatorcontrib><description>Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3202561</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alignment ; Centroids ; Clustering ; Convergence ; Factorization ; Feature alignment ; incomplete multiview ; Linear programming ; Mathematical analysis ; Matrix decomposition ; Microwave integrated circuits ; normalizing strategy ; Optimization ; pairwise co-regularization ; Predictive models ; Regularization ; Source code ; Task analysis ; Vector spaces</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-08, Vol.35 (8), p.8126-8142</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763</citedby><cites>FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763</cites><orcidid>0000-0003-4772-3284 ; 0000-0001-5838-0198 ; 0000-0002-5351-8546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9869733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9869733$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Guosheng</creatorcontrib><creatorcontrib>Wang, Ruxin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><title>Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Centroids</subject><subject>Clustering</subject><subject>Convergence</subject><subject>Factorization</subject><subject>Feature alignment</subject><subject>incomplete multiview</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Microwave integrated circuits</subject><subject>normalizing strategy</subject><subject>Optimization</subject><subject>pairwise co-regularization</subject><subject>Predictive models</subject><subject>Regularization</subject><subject>Source code</subject><subject>Task analysis</subject><subject>Vector spaces</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhYMoWKs_QNwEXKfOKzOTZalai1VBW9w5TNKbdEoedWaitL_ehBY355zFOffCFwTXGI0wRsnd4vn-YUQQISPaaczxSTDAcSwjghN82mXEcMQoE-fBhXMbhJAUEg-Cr1mdNdW2BA_hS1t682PgN5yUrfNgTV2ES9fra2MrXZp9n8elKeoKah9-eKs9FLvw0_h1OLV6uw7foWhLbc1ee9PUl8FZrksHV0cfBsvHh8XkKZq_TWeT8TzKSEJ9BJQRTkWc5zrlAiikCRIEINeCEpA5RYKlWGquM6FFnmaZXlHGs1gmq1gITofB7eHu1jbfLTivNk1r6-6lIpIyijijcdfCh1ZmG-cs5GprTaXtTmGkeoyqx6h6jOqIsdvcHDYGAP77ieSJoJT-AWU8cBM</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Cui, Guosheng</creator><creator>Wang, Ruxin</creator><creator>Wu, Dan</creator><creator>Li, Ye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4772-3284</orcidid><orcidid>https://orcid.org/0000-0001-5838-0198</orcidid><orcidid>https://orcid.org/0000-0002-5351-8546</orcidid></search><sort><creationdate>20230801</creationdate><title>Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization</title><author>Cui, Guosheng ; Wang, Ruxin ; Wu, Dan ; Li, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Centroids</topic><topic>Clustering</topic><topic>Convergence</topic><topic>Factorization</topic><topic>Feature alignment</topic><topic>incomplete multiview</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Microwave integrated circuits</topic><topic>normalizing strategy</topic><topic>Optimization</topic><topic>pairwise co-regularization</topic><topic>Predictive models</topic><topic>Regularization</topic><topic>Source code</topic><topic>Task analysis</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Guosheng</creatorcontrib><creatorcontrib>Wang, Ruxin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Guosheng</au><au>Wang, Ruxin</au><au>Wu, Dan</au><au>Li, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>8</issue><spage>8126</spage><epage>8142</epage><pages>8126-8142</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3202561</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4772-3284</orcidid><orcidid>https://orcid.org/0000-0001-5838-0198</orcidid><orcidid>https://orcid.org/0000-0002-5351-8546</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-08, Vol.35 (8), p.8126-8142 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2834306435 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alignment Centroids Clustering Convergence Factorization Feature alignment incomplete multiview Linear programming Mathematical analysis Matrix decomposition Microwave integrated circuits normalizing strategy Optimization pairwise co-regularization Predictive models Regularization Source code Task analysis Vector spaces |
title | Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incomplete%20Multiview%20Clustering%20Using%20Normalizing%20Alignment%20Strategy%20With%20Graph%20Regularization&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Cui,%20Guosheng&rft.date=2023-08-01&rft.volume=35&rft.issue=8&rft.spage=8126&rft.epage=8142&rft.pages=8126-8142&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3202561&rft_dat=%3Cproquest_RIE%3E2834306435%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834306435&rft_id=info:pmid/&rft_ieee_id=9869733&rfr_iscdi=true |