Limit Theorems for “Random Flights”
The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T k of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomo...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-07, Vol.273 (5), p.755-762 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 5 |
container_start_page | 755 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 273 |
creator | Davydov, Yu. A. |
description | The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T
k
of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence (T
k
). |
doi_str_mv | 10.1007/s10958-023-06538-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2834154344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A757804063</galeid><sourcerecordid>A757804063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3683-93ee6ae34d2a544b324e7b03699884a6fb04378688d59d29c5ad61a4b5458523</originalsourceid><addsrcrecordid>eNp9kd1KwzAYhosoOKc34FHBA_EgM82Xvx6O4XQwEObOQ9qmXcfazqQDPduF6M3tSsysMAZDcpAQnuf94HuD4DbCgwhj8egiHDOJMAGEOQOJ4CzoRUwAkiJm5_6NBUEAgl4GV84tsZe4hF5wPy2rsg3nC9NYU7kwb2y4237NdJ01VThelcWidbvt93VwkeuVMzd_dz-Yj5_moxc0fX2ejIZTlILPQzEYw7UBmhHNKE2AUCMSDDyOpaSa5wmmICSXMmNxRuKU6YxHmiaMMskI9IO7LnZtm_eNca1aNhtb-4mKSKARo0DpgSr0yqiyzpvW6rQqXaqGggmJKebgKXSCKkxtrF41tclL_33ED07w_mSmKtOTwsOR4JnWfLSF3jinJm-zY5Z0bGob56zJ1dqWlbafKsJqX6HqKlS-QvVbodpL0EnOw3Vh7GEb_1g_8A6aWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834154344</pqid></control><display><type>article</type><title>Limit Theorems for “Random Flights”</title><source>Springer Nature - Complete Springer Journals</source><creator>Davydov, Yu. A.</creator><creatorcontrib>Davydov, Yu. A.</creatorcontrib><description>The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T
k
of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence (T
k
).</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06538-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic properties ; Inhomogeneity ; Mathematics ; Mathematics and Statistics ; Particle trajectories</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-07, Vol.273 (5), p.755-762</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3683-93ee6ae34d2a544b324e7b03699884a6fb04378688d59d29c5ad61a4b5458523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-023-06538-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-023-06538-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Davydov, Yu. A.</creatorcontrib><title>Limit Theorems for “Random Flights”</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T
k
of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence (T
k
).</description><subject>Asymptotic properties</subject><subject>Inhomogeneity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Particle trajectories</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kd1KwzAYhosoOKc34FHBA_EgM82Xvx6O4XQwEObOQ9qmXcfazqQDPduF6M3tSsysMAZDcpAQnuf94HuD4DbCgwhj8egiHDOJMAGEOQOJ4CzoRUwAkiJm5_6NBUEAgl4GV84tsZe4hF5wPy2rsg3nC9NYU7kwb2y4237NdJ01VThelcWidbvt93VwkeuVMzd_dz-Yj5_moxc0fX2ejIZTlILPQzEYw7UBmhHNKE2AUCMSDDyOpaSa5wmmICSXMmNxRuKU6YxHmiaMMskI9IO7LnZtm_eNca1aNhtb-4mKSKARo0DpgSr0yqiyzpvW6rQqXaqGggmJKebgKXSCKkxtrF41tclL_33ED07w_mSmKtOTwsOR4JnWfLSF3jinJm-zY5Z0bGob56zJ1dqWlbafKsJqX6HqKlS-QvVbodpL0EnOw3Vh7GEb_1g_8A6aWA</recordid><startdate>20230702</startdate><enddate>20230702</enddate><creator>Davydov, Yu. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230702</creationdate><title>Limit Theorems for “Random Flights”</title><author>Davydov, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3683-93ee6ae34d2a544b324e7b03699884a6fb04378688d59d29c5ad61a4b5458523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Inhomogeneity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Particle trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davydov, Yu. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davydov, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit Theorems for “Random Flights”</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-07-02</date><risdate>2023</risdate><volume>273</volume><issue>5</issue><spage>755</spage><epage>762</epage><pages>755-762</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T
k
of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence (T
k
).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06538-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2023-07, Vol.273 (5), p.755-762 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2834154344 |
source | Springer Nature - Complete Springer Journals |
subjects | Asymptotic properties Inhomogeneity Mathematics Mathematics and Statistics Particle trajectories |
title | Limit Theorems for “Random Flights” |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20Theorems%20for%20%E2%80%9CRandom%20Flights%E2%80%9D&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Davydov,%20Yu.%20A.&rft.date=2023-07-02&rft.volume=273&rft.issue=5&rft.spage=755&rft.epage=762&rft.pages=755-762&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06538-3&rft_dat=%3Cgale_proqu%3EA757804063%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834154344&rft_id=info:pmid/&rft_galeid=A757804063&rfr_iscdi=true |