Limit Theorems for “Random Flights”

The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T k of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-07, Vol.273 (5), p.755-762
1. Verfasser: Davydov, Yu. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 5
container_start_page 755
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 273
creator Davydov, Yu. A.
description The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T k of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence (T k ).
doi_str_mv 10.1007/s10958-023-06538-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2834154344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A757804063</galeid><sourcerecordid>A757804063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3683-93ee6ae34d2a544b324e7b03699884a6fb04378688d59d29c5ad61a4b5458523</originalsourceid><addsrcrecordid>eNp9kd1KwzAYhosoOKc34FHBA_EgM82Xvx6O4XQwEObOQ9qmXcfazqQDPduF6M3tSsysMAZDcpAQnuf94HuD4DbCgwhj8egiHDOJMAGEOQOJ4CzoRUwAkiJm5_6NBUEAgl4GV84tsZe4hF5wPy2rsg3nC9NYU7kwb2y4237NdJ01VThelcWidbvt93VwkeuVMzd_dz-Yj5_moxc0fX2ejIZTlILPQzEYw7UBmhHNKE2AUCMSDDyOpaSa5wmmICSXMmNxRuKU6YxHmiaMMskI9IO7LnZtm_eNca1aNhtb-4mKSKARo0DpgSr0yqiyzpvW6rQqXaqGggmJKebgKXSCKkxtrF41tclL_33ED07w_mSmKtOTwsOR4JnWfLSF3jinJm-zY5Z0bGob56zJ1dqWlbafKsJqX6HqKlS-QvVbodpL0EnOw3Vh7GEb_1g_8A6aWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834154344</pqid></control><display><type>article</type><title>Limit Theorems for “Random Flights”</title><source>Springer Nature - Complete Springer Journals</source><creator>Davydov, Yu. A.</creator><creatorcontrib>Davydov, Yu. A.</creatorcontrib><description>The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T k of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence (T k ).</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06538-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic properties ; Inhomogeneity ; Mathematics ; Mathematics and Statistics ; Particle trajectories</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-07, Vol.273 (5), p.755-762</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3683-93ee6ae34d2a544b324e7b03699884a6fb04378688d59d29c5ad61a4b5458523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-023-06538-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-023-06538-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Davydov, Yu. A.</creatorcontrib><title>Limit Theorems for “Random Flights”</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T k of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence (T k ).</description><subject>Asymptotic properties</subject><subject>Inhomogeneity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Particle trajectories</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kd1KwzAYhosoOKc34FHBA_EgM82Xvx6O4XQwEObOQ9qmXcfazqQDPduF6M3tSsysMAZDcpAQnuf94HuD4DbCgwhj8egiHDOJMAGEOQOJ4CzoRUwAkiJm5_6NBUEAgl4GV84tsZe4hF5wPy2rsg3nC9NYU7kwb2y4237NdJ01VThelcWidbvt93VwkeuVMzd_dz-Yj5_moxc0fX2ejIZTlILPQzEYw7UBmhHNKE2AUCMSDDyOpaSa5wmmICSXMmNxRuKU6YxHmiaMMskI9IO7LnZtm_eNca1aNhtb-4mKSKARo0DpgSr0yqiyzpvW6rQqXaqGggmJKebgKXSCKkxtrF41tclL_33ED07w_mSmKtOTwsOR4JnWfLSF3jinJm-zY5Z0bGob56zJ1dqWlbafKsJqX6HqKlS-QvVbodpL0EnOw3Vh7GEb_1g_8A6aWA</recordid><startdate>20230702</startdate><enddate>20230702</enddate><creator>Davydov, Yu. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230702</creationdate><title>Limit Theorems for “Random Flights”</title><author>Davydov, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3683-93ee6ae34d2a544b324e7b03699884a6fb04378688d59d29c5ad61a4b5458523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Inhomogeneity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Particle trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davydov, Yu. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davydov, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit Theorems for “Random Flights”</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-07-02</date><risdate>2023</risdate><volume>273</volume><issue>5</issue><spage>755</spage><epage>762</epage><pages>755-762</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The article discusses the asymptotic behavior of a particle performing so-called “random flight.” In a recent work by Davydov–Konakov (2017), when the moments T k of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence (T k ).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06538-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2023-07, Vol.273 (5), p.755-762
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2834154344
source Springer Nature - Complete Springer Journals
subjects Asymptotic properties
Inhomogeneity
Mathematics
Mathematics and Statistics
Particle trajectories
title Limit Theorems for “Random Flights”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20Theorems%20for%20%E2%80%9CRandom%20Flights%E2%80%9D&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Davydov,%20Yu.%20A.&rft.date=2023-07-02&rft.volume=273&rft.issue=5&rft.spage=755&rft.epage=762&rft.pages=755-762&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06538-3&rft_dat=%3Cgale_proqu%3EA757804063%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834154344&rft_id=info:pmid/&rft_galeid=A757804063&rfr_iscdi=true