Thermal Decomposition Assisted Construction of Nano‐Li3N Sites Interface Layer Enabling Homogeneous Li Deposition

Lithium (Li) metal is a highly desirable anode for all‐solid‐state lithium‐ion batteries (ASSLBs) due to its high theoretical capacity and being well matched with solid‐state electrolytes. However, the practical applications of Li metal anode are hindered by the uneven Li metal plating/stripping beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2023-07, Vol.16 (13), p.n/a
Hauptverfasser: Li, Hongyang, Li, Ling, Zheng, Jingang, Huang, Hao, Zhang, Han, An, Baigang, Geng, Xin, Sun, Chengguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title ChemSusChem
container_volume 16
creator Li, Hongyang
Li, Ling
Zheng, Jingang
Huang, Hao
Zhang, Han
An, Baigang
Geng, Xin
Sun, Chengguo
description Lithium (Li) metal is a highly desirable anode for all‐solid‐state lithium‐ion batteries (ASSLBs) due to its high theoretical capacity and being well matched with solid‐state electrolytes. However, the practical applications of Li metal anode are hindered by the uneven Li metal plating/stripping behavior and poor contact between electrolyte and Li anode. Herein, a convenient and efficient strategy to construct the Li3N‐based interlayer between solid poly(ethylene oxide) (PEO) electrolyte and Li anode is proposed by in situ thermal decomposition of 2,2′‐azobisisobutyronitrile (AIBN) additive. The evolved Li3N nanoparticles are capable of combining LiF, cyano derivatives and PEO electrolyte to form a buffer layer of about 0.9 μm during the cell cycle, which can buffer Li+ concentration and homogenize Li deposition. The Li||Li symmetric cells with Li3N‐based interlayer show excellent cycle stability at 0.2 mA cm−2, which is at least 4 times longer cycle life than that of PEO electrolytes without Li3N layer. This work provides a convenient strategy for designing interface engineering between solid‐state polymer electrolyte and Li anode. At the interface: Li3N grown at anode‐electrolyte interface is constructed by in situ thermal decomposition of poly(ethylene oxide) (PEO) based electrolyte containing 2,2’‐azoisisobutyronitrile. The evolved Li3N nanoparticles serve as a buffer layer, exhibiting high ionic conductivity and homogeneous Li deposition behavior for protecting lithium anode of solid‐state batteries.
doi_str_mv 10.1002/cssc.202202220
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2833826413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833826413</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-82a1f11f411e3f18ecf343891e7be4441aaaa1007eca3aeda174f4921668094b3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKVsyXOKX7hJscqFFopKocWiZvlpuviKrGDnQj1xifwjXwJKY-uVtrZ1WhGOwhdUzKihLDbMsZyxAg7NCMnaEBTKZI7KV5Oj5jTc3QR444QSTIpByiuXiHUusL3UPq68dG21js8idHGFjY49y62oSt_rt7ghXb-6-OzsHyBl7aFiOeuhWB0CbjQewh46vS6sm6LZ772W3Dgu4gL2xv8q1-iM6OrCFd_c4ieH6arfJYUT4_zfFIkDeOcJCnT1FBqBKXADU2hNFzwNKMwXoMQguq--s_HUGquYaPpWBiRMSplSjKx5kN086vbBP_WQWzVznfB9ZaKpZynTArKe1b2y3q3FexVE2ytw15Rog6pqkOq6piqypfL_Ljxb-4Xb9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833826413</pqid></control><display><type>article</type><title>Thermal Decomposition Assisted Construction of Nano‐Li3N Sites Interface Layer Enabling Homogeneous Li Deposition</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Hongyang ; Li, Ling ; Zheng, Jingang ; Huang, Hao ; Zhang, Han ; An, Baigang ; Geng, Xin ; Sun, Chengguo</creator><creatorcontrib>Li, Hongyang ; Li, Ling ; Zheng, Jingang ; Huang, Hao ; Zhang, Han ; An, Baigang ; Geng, Xin ; Sun, Chengguo</creatorcontrib><description>Lithium (Li) metal is a highly desirable anode for all‐solid‐state lithium‐ion batteries (ASSLBs) due to its high theoretical capacity and being well matched with solid‐state electrolytes. However, the practical applications of Li metal anode are hindered by the uneven Li metal plating/stripping behavior and poor contact between electrolyte and Li anode. Herein, a convenient and efficient strategy to construct the Li3N‐based interlayer between solid poly(ethylene oxide) (PEO) electrolyte and Li anode is proposed by in situ thermal decomposition of 2,2′‐azobisisobutyronitrile (AIBN) additive. The evolved Li3N nanoparticles are capable of combining LiF, cyano derivatives and PEO electrolyte to form a buffer layer of about 0.9 μm during the cell cycle, which can buffer Li+ concentration and homogenize Li deposition. The Li||Li symmetric cells with Li3N‐based interlayer show excellent cycle stability at 0.2 mA cm−2, which is at least 4 times longer cycle life than that of PEO electrolytes without Li3N layer. This work provides a convenient strategy for designing interface engineering between solid‐state polymer electrolyte and Li anode. At the interface: Li3N grown at anode‐electrolyte interface is constructed by in situ thermal decomposition of poly(ethylene oxide) (PEO) based electrolyte containing 2,2’‐azoisisobutyronitrile. The evolved Li3N nanoparticles serve as a buffer layer, exhibiting high ionic conductivity and homogeneous Li deposition behavior for protecting lithium anode of solid‐state batteries.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202202220</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Azobisisobutyronitrile ; Buffer layers ; Cell cycle ; Deposition ; Electrolytes ; Electrolytic cells ; Ethylene oxide ; Interlayers ; Li3N interface layer ; lithium metal anode ; Lithium-ion batteries ; lithium-ion battery ; Molten salt electrolytes ; Nanoparticles ; Polyethylene oxide ; Solid electrolytes ; solid polymer electrolyte ; solid-state battery ; Thermal decomposition</subject><ispartof>ChemSusChem, 2023-07, Vol.16 (13), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6905-0952 ; 0000-0003-3580-2153 ; 0000-0001-6111-8166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202202220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202202220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Hongyang</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Zheng, Jingang</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>An, Baigang</creatorcontrib><creatorcontrib>Geng, Xin</creatorcontrib><creatorcontrib>Sun, Chengguo</creatorcontrib><title>Thermal Decomposition Assisted Construction of Nano‐Li3N Sites Interface Layer Enabling Homogeneous Li Deposition</title><title>ChemSusChem</title><description>Lithium (Li) metal is a highly desirable anode for all‐solid‐state lithium‐ion batteries (ASSLBs) due to its high theoretical capacity and being well matched with solid‐state electrolytes. However, the practical applications of Li metal anode are hindered by the uneven Li metal plating/stripping behavior and poor contact between electrolyte and Li anode. Herein, a convenient and efficient strategy to construct the Li3N‐based interlayer between solid poly(ethylene oxide) (PEO) electrolyte and Li anode is proposed by in situ thermal decomposition of 2,2′‐azobisisobutyronitrile (AIBN) additive. The evolved Li3N nanoparticles are capable of combining LiF, cyano derivatives and PEO electrolyte to form a buffer layer of about 0.9 μm during the cell cycle, which can buffer Li+ concentration and homogenize Li deposition. The Li||Li symmetric cells with Li3N‐based interlayer show excellent cycle stability at 0.2 mA cm−2, which is at least 4 times longer cycle life than that of PEO electrolytes without Li3N layer. This work provides a convenient strategy for designing interface engineering between solid‐state polymer electrolyte and Li anode. At the interface: Li3N grown at anode‐electrolyte interface is constructed by in situ thermal decomposition of poly(ethylene oxide) (PEO) based electrolyte containing 2,2’‐azoisisobutyronitrile. The evolved Li3N nanoparticles serve as a buffer layer, exhibiting high ionic conductivity and homogeneous Li deposition behavior for protecting lithium anode of solid‐state batteries.</description><subject>Azobisisobutyronitrile</subject><subject>Buffer layers</subject><subject>Cell cycle</subject><subject>Deposition</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ethylene oxide</subject><subject>Interlayers</subject><subject>Li3N interface layer</subject><subject>lithium metal anode</subject><subject>Lithium-ion batteries</subject><subject>lithium-ion battery</subject><subject>Molten salt electrolytes</subject><subject>Nanoparticles</subject><subject>Polyethylene oxide</subject><subject>Solid electrolytes</subject><subject>solid polymer electrolyte</subject><subject>solid-state battery</subject><subject>Thermal decomposition</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKVsyXOKX7hJscqFFopKocWiZvlpuviKrGDnQj1xifwjXwJKY-uVtrZ1WhGOwhdUzKihLDbMsZyxAg7NCMnaEBTKZI7KV5Oj5jTc3QR444QSTIpByiuXiHUusL3UPq68dG21js8idHGFjY49y62oSt_rt7ghXb-6-OzsHyBl7aFiOeuhWB0CbjQewh46vS6sm6LZ772W3Dgu4gL2xv8q1-iM6OrCFd_c4ieH6arfJYUT4_zfFIkDeOcJCnT1FBqBKXADU2hNFzwNKMwXoMQguq--s_HUGquYaPpWBiRMSplSjKx5kN086vbBP_WQWzVznfB9ZaKpZynTArKe1b2y3q3FexVE2ytw15Rog6pqkOq6piqypfL_Ljxb-4Xb9c</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>Li, Hongyang</creator><creator>Li, Ling</creator><creator>Zheng, Jingang</creator><creator>Huang, Hao</creator><creator>Zhang, Han</creator><creator>An, Baigang</creator><creator>Geng, Xin</creator><creator>Sun, Chengguo</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6905-0952</orcidid><orcidid>https://orcid.org/0000-0003-3580-2153</orcidid><orcidid>https://orcid.org/0000-0001-6111-8166</orcidid></search><sort><creationdate>20230707</creationdate><title>Thermal Decomposition Assisted Construction of Nano‐Li3N Sites Interface Layer Enabling Homogeneous Li Deposition</title><author>Li, Hongyang ; Li, Ling ; Zheng, Jingang ; Huang, Hao ; Zhang, Han ; An, Baigang ; Geng, Xin ; Sun, Chengguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-82a1f11f411e3f18ecf343891e7be4441aaaa1007eca3aeda174f4921668094b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Azobisisobutyronitrile</topic><topic>Buffer layers</topic><topic>Cell cycle</topic><topic>Deposition</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ethylene oxide</topic><topic>Interlayers</topic><topic>Li3N interface layer</topic><topic>lithium metal anode</topic><topic>Lithium-ion batteries</topic><topic>lithium-ion battery</topic><topic>Molten salt electrolytes</topic><topic>Nanoparticles</topic><topic>Polyethylene oxide</topic><topic>Solid electrolytes</topic><topic>solid polymer electrolyte</topic><topic>solid-state battery</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongyang</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Zheng, Jingang</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>An, Baigang</creatorcontrib><creatorcontrib>Geng, Xin</creatorcontrib><creatorcontrib>Sun, Chengguo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongyang</au><au>Li, Ling</au><au>Zheng, Jingang</au><au>Huang, Hao</au><au>Zhang, Han</au><au>An, Baigang</au><au>Geng, Xin</au><au>Sun, Chengguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Decomposition Assisted Construction of Nano‐Li3N Sites Interface Layer Enabling Homogeneous Li Deposition</atitle><jtitle>ChemSusChem</jtitle><date>2023-07-07</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><epage>n/a</epage><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Lithium (Li) metal is a highly desirable anode for all‐solid‐state lithium‐ion batteries (ASSLBs) due to its high theoretical capacity and being well matched with solid‐state electrolytes. However, the practical applications of Li metal anode are hindered by the uneven Li metal plating/stripping behavior and poor contact between electrolyte and Li anode. Herein, a convenient and efficient strategy to construct the Li3N‐based interlayer between solid poly(ethylene oxide) (PEO) electrolyte and Li anode is proposed by in situ thermal decomposition of 2,2′‐azobisisobutyronitrile (AIBN) additive. The evolved Li3N nanoparticles are capable of combining LiF, cyano derivatives and PEO electrolyte to form a buffer layer of about 0.9 μm during the cell cycle, which can buffer Li+ concentration and homogenize Li deposition. The Li||Li symmetric cells with Li3N‐based interlayer show excellent cycle stability at 0.2 mA cm−2, which is at least 4 times longer cycle life than that of PEO electrolytes without Li3N layer. This work provides a convenient strategy for designing interface engineering between solid‐state polymer electrolyte and Li anode. At the interface: Li3N grown at anode‐electrolyte interface is constructed by in situ thermal decomposition of poly(ethylene oxide) (PEO) based electrolyte containing 2,2’‐azoisisobutyronitrile. The evolved Li3N nanoparticles serve as a buffer layer, exhibiting high ionic conductivity and homogeneous Li deposition behavior for protecting lithium anode of solid‐state batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.202202220</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6905-0952</orcidid><orcidid>https://orcid.org/0000-0003-3580-2153</orcidid><orcidid>https://orcid.org/0000-0001-6111-8166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2023-07, Vol.16 (13), p.n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_journals_2833826413
source Wiley Online Library Journals Frontfile Complete
subjects Azobisisobutyronitrile
Buffer layers
Cell cycle
Deposition
Electrolytes
Electrolytic cells
Ethylene oxide
Interlayers
Li3N interface layer
lithium metal anode
Lithium-ion batteries
lithium-ion battery
Molten salt electrolytes
Nanoparticles
Polyethylene oxide
Solid electrolytes
solid polymer electrolyte
solid-state battery
Thermal decomposition
title Thermal Decomposition Assisted Construction of Nano‐Li3N Sites Interface Layer Enabling Homogeneous Li Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Decomposition%20Assisted%20Construction%20of%20Nano%E2%80%90Li3N%20Sites%20Interface%20Layer%20Enabling%20Homogeneous%20Li%20Deposition&rft.jtitle=ChemSusChem&rft.au=Li,%20Hongyang&rft.date=2023-07-07&rft.volume=16&rft.issue=13&rft.epage=n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202202220&rft_dat=%3Cproquest_wiley%3E2833826413%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833826413&rft_id=info:pmid/&rfr_iscdi=true