Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana

The Ghana Cashew Disease Identification with Artificial Intelligence (CADI AI) project demonstrates the importance of sound data work as a precondition for the delivery of useful, localized datacentric solutions for public good tasks such as agricultural productivity and food security. Drone collect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Darlington Akogo, Samori, Issah, Akafia, Cyril, Fiagbor, Harriet, Andrews Kangah, Asiedu, Donald Kwame, Fuachie, Kwabena, Oala, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Darlington Akogo
Samori, Issah
Akafia, Cyril
Fiagbor, Harriet
Andrews Kangah
Asiedu, Donald Kwame
Fuachie, Kwabena
Oala, Luis
description The Ghana Cashew Disease Identification with Artificial Intelligence (CADI AI) project demonstrates the importance of sound data work as a precondition for the delivery of useful, localized datacentric solutions for public good tasks such as agricultural productivity and food security. Drone collected data and machine learning are utilized to determine crop stressors. Data, model and the final app are developed jointly and made available to local farmers via a desktop application.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2833811507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833811507</sourcerecordid><originalsourceid>FETCH-proquest_journals_28338115073</originalsourceid><addsrcrecordid>eNqNjM1KAzEURoMgtGjf4YLrgZmk0w7uZPpjYQTBQpflkrmht4bcmmQWdeGztxYfwNW3OOd8d2qsjamKZqr1SE1SOpZlqWdzXddmrH46sej5m3pYYEbYSfwETIDwHslK6DmzBHASb7xoKeTIFt66Z3iBFhPBRx76M4iD1eA9dOzInq0naKOcYMGJfqVNfw3ZscXbHwdYHzDgo7p36BNN_vZBPa2W2_a1OEX5Gijl_VGGGK5orxtjmqqqy7n5n3UB7DZNjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833811507</pqid></control><display><type>article</type><title>Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana</title><source>Free E- Journals</source><creator>Darlington Akogo ; Samori, Issah ; Akafia, Cyril ; Fiagbor, Harriet ; Andrews Kangah ; Asiedu, Donald Kwame ; Fuachie, Kwabena ; Oala, Luis</creator><creatorcontrib>Darlington Akogo ; Samori, Issah ; Akafia, Cyril ; Fiagbor, Harriet ; Andrews Kangah ; Asiedu, Donald Kwame ; Fuachie, Kwabena ; Oala, Luis</creatorcontrib><description>The Ghana Cashew Disease Identification with Artificial Intelligence (CADI AI) project demonstrates the importance of sound data work as a precondition for the delivery of useful, localized datacentric solutions for public good tasks such as agricultural productivity and food security. Drone collected data and machine learning are utilized to determine crop stressors. Data, model and the final app are developed jointly and made available to local farmers via a desktop application.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Data collection ; Machine learning ; Plant diseases</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Darlington Akogo</creatorcontrib><creatorcontrib>Samori, Issah</creatorcontrib><creatorcontrib>Akafia, Cyril</creatorcontrib><creatorcontrib>Fiagbor, Harriet</creatorcontrib><creatorcontrib>Andrews Kangah</creatorcontrib><creatorcontrib>Asiedu, Donald Kwame</creatorcontrib><creatorcontrib>Fuachie, Kwabena</creatorcontrib><creatorcontrib>Oala, Luis</creatorcontrib><title>Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana</title><title>arXiv.org</title><description>The Ghana Cashew Disease Identification with Artificial Intelligence (CADI AI) project demonstrates the importance of sound data work as a precondition for the delivery of useful, localized datacentric solutions for public good tasks such as agricultural productivity and food security. Drone collected data and machine learning are utilized to determine crop stressors. Data, model and the final app are developed jointly and made available to local farmers via a desktop application.</description><subject>Artificial intelligence</subject><subject>Data collection</subject><subject>Machine learning</subject><subject>Plant diseases</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM1KAzEURoMgtGjf4YLrgZmk0w7uZPpjYQTBQpflkrmht4bcmmQWdeGztxYfwNW3OOd8d2qsjamKZqr1SE1SOpZlqWdzXddmrH46sej5m3pYYEbYSfwETIDwHslK6DmzBHASb7xoKeTIFt66Z3iBFhPBRx76M4iD1eA9dOzInq0naKOcYMGJfqVNfw3ZscXbHwdYHzDgo7p36BNN_vZBPa2W2_a1OEX5Gijl_VGGGK5orxtjmqqqy7n5n3UB7DZNjw</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Darlington Akogo</creator><creator>Samori, Issah</creator><creator>Akafia, Cyril</creator><creator>Fiagbor, Harriet</creator><creator>Andrews Kangah</creator><creator>Asiedu, Donald Kwame</creator><creator>Fuachie, Kwabena</creator><creator>Oala, Luis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230704</creationdate><title>Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana</title><author>Darlington Akogo ; Samori, Issah ; Akafia, Cyril ; Fiagbor, Harriet ; Andrews Kangah ; Asiedu, Donald Kwame ; Fuachie, Kwabena ; Oala, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28338115073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Data collection</topic><topic>Machine learning</topic><topic>Plant diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>Darlington Akogo</creatorcontrib><creatorcontrib>Samori, Issah</creatorcontrib><creatorcontrib>Akafia, Cyril</creatorcontrib><creatorcontrib>Fiagbor, Harriet</creatorcontrib><creatorcontrib>Andrews Kangah</creatorcontrib><creatorcontrib>Asiedu, Donald Kwame</creatorcontrib><creatorcontrib>Fuachie, Kwabena</creatorcontrib><creatorcontrib>Oala, Luis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darlington Akogo</au><au>Samori, Issah</au><au>Akafia, Cyril</au><au>Fiagbor, Harriet</au><au>Andrews Kangah</au><au>Asiedu, Donald Kwame</au><au>Fuachie, Kwabena</au><au>Oala, Luis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana</atitle><jtitle>arXiv.org</jtitle><date>2023-07-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The Ghana Cashew Disease Identification with Artificial Intelligence (CADI AI) project demonstrates the importance of sound data work as a precondition for the delivery of useful, localized datacentric solutions for public good tasks such as agricultural productivity and food security. Drone collected data and machine learning are utilized to determine crop stressors. Data, model and the final app are developed jointly and made available to local farmers via a desktop application.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2833811507
source Free E- Journals
subjects Artificial intelligence
Data collection
Machine learning
Plant diseases
title Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Localized%20Data%20Work%20as%20a%20Precondition%20for%20Data-Centric%20ML:%20A%20Case%20Study%20of%20Full%20Lifecycle%20Crop%20Disease%20Identification%20in%20Ghana&rft.jtitle=arXiv.org&rft.au=Darlington%20Akogo&rft.date=2023-07-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2833811507%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833811507&rft_id=info:pmid/&rfr_iscdi=true