Optical Orbital Angular Momentum Processors with Electrically Tailored Working Bands

Novel options for multiplexing, such as orbital angular momentum (OAM), are sought to satisfy the explosive growth of information capacity. Consequently, spatial phase modulation with on‐demand tailoring of working bands is increasingly investigated. In this study, a polymer‐stabilized cholesteric l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2023-07, Vol.17 (7), p.n/a
Hauptverfasser: Xu, Chun‐Ting, Zhang, De‐Wei, Yuan, Rui, Chen, Quan‐Ming, Liang, Xiao, Hu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Laser & photonics reviews
container_volume 17
creator Xu, Chun‐Ting
Zhang, De‐Wei
Yuan, Rui
Chen, Quan‐Ming
Liang, Xiao
Hu, Wei
description Novel options for multiplexing, such as orbital angular momentum (OAM), are sought to satisfy the explosive growth of information capacity. Consequently, spatial phase modulation with on‐demand tailoring of working bands is increasingly investigated. In this study, a polymer‐stabilized cholesteric liquid crystal is used to address this requirement. A varying DC voltage is applied, and the working band is increased over eightfold owing to the electric‐induced gradient pitch of the polymer network. Thus, the working band of an OAM processor is reversibly switched between narrowband and broadband states. An OAM‐multiplexing hologram is designed for parallel OAM encoding and decoding, enabling a wavelength‐division‐multiplexing compatible approach for in situ and non‐destructive OAM processing. The proposed design offers a promising solution for the on‐demand tailoring of working bands in liquid crystal planar optics and can promote advancements in massive information transmission and large‐capacity data processing. Optical orbital angular momentum (OAM) processors with electrically tailored working bands are proposed based on polymer‐stabilized cholesteric liquid crystals. The photonic bandgap can be extended from 41 to 350 nm, enabling OAM‐based mode‐division multiplexing compatible with wavelength‐division multiplexing. This study is promising for large‐capacity optical communication and parallel information processing.
doi_str_mv 10.1002/lpor.202201013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2833776084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833776084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-c66e8e723cd34bac127c9ff3db345b45927208d7c6a0df3e3990629351e1bc333</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTrF9-bDHUpUPqSgVKmK0HMcpKW4c7ERV_z2pisrILe8Nz3MnvQjdUjKhhLB72zo_YYQxQgmFMzSiPIWIcyHOTzsnl-gqhA0hyTDpCK3ytqu1sjj3Rd0NOW3WvVUev7qtabp-i5feaROC8wHv6u4Tz63RnT84do9XqrbOmxJ_OP9VN2v8oJoyXKOLStlgbn5zjN4f56vZc7TIn15m00WkgWYQ6TQ13GQMdAlxoTRlmRZVBWUBcVLEiWAZI7zMdKpIWYEBIUjKBCTU0EIDwBjdHe-23n33JnRy43rfDC8l4wBZlhIeD9TkSGnvQvCmkq2vt8rvJSXy0Jw8NCdPzQ2COAq72pr9P7RcLPO3P_cHC6hyug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833776084</pqid></control><display><type>article</type><title>Optical Orbital Angular Momentum Processors with Electrically Tailored Working Bands</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Chun‐Ting ; Zhang, De‐Wei ; Yuan, Rui ; Chen, Quan‐Ming ; Liang, Xiao ; Hu, Wei</creator><creatorcontrib>Xu, Chun‐Ting ; Zhang, De‐Wei ; Yuan, Rui ; Chen, Quan‐Ming ; Liang, Xiao ; Hu, Wei</creatorcontrib><description>Novel options for multiplexing, such as orbital angular momentum (OAM), are sought to satisfy the explosive growth of information capacity. Consequently, spatial phase modulation with on‐demand tailoring of working bands is increasingly investigated. In this study, a polymer‐stabilized cholesteric liquid crystal is used to address this requirement. A varying DC voltage is applied, and the working band is increased over eightfold owing to the electric‐induced gradient pitch of the polymer network. Thus, the working band of an OAM processor is reversibly switched between narrowband and broadband states. An OAM‐multiplexing hologram is designed for parallel OAM encoding and decoding, enabling a wavelength‐division‐multiplexing compatible approach for in situ and non‐destructive OAM processing. The proposed design offers a promising solution for the on‐demand tailoring of working bands in liquid crystal planar optics and can promote advancements in massive information transmission and large‐capacity data processing. Optical orbital angular momentum (OAM) processors with electrically tailored working bands are proposed based on polymer‐stabilized cholesteric liquid crystals. The photonic bandgap can be extended from 41 to 350 nm, enabling OAM‐based mode‐division multiplexing compatible with wavelength‐division multiplexing. This study is promising for large‐capacity optical communication and parallel information processing.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202201013</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Angular momentum ; Broadband ; Cholesteric liquid crystals ; Data processing ; geometric phase ; Microprocessors ; Multiplexing ; Narrowband ; orbital angular momentum ; Phase modulation ; photoalignment ; Polymers</subject><ispartof>Laser &amp; photonics reviews, 2023-07, Vol.17 (7), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-c66e8e723cd34bac127c9ff3db345b45927208d7c6a0df3e3990629351e1bc333</citedby><cites>FETCH-LOGICAL-c3173-c66e8e723cd34bac127c9ff3db345b45927208d7c6a0df3e3990629351e1bc333</cites><orcidid>0000-0003-1255-9453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202201013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202201013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Xu, Chun‐Ting</creatorcontrib><creatorcontrib>Zhang, De‐Wei</creatorcontrib><creatorcontrib>Yuan, Rui</creatorcontrib><creatorcontrib>Chen, Quan‐Ming</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><title>Optical Orbital Angular Momentum Processors with Electrically Tailored Working Bands</title><title>Laser &amp; photonics reviews</title><description>Novel options for multiplexing, such as orbital angular momentum (OAM), are sought to satisfy the explosive growth of information capacity. Consequently, spatial phase modulation with on‐demand tailoring of working bands is increasingly investigated. In this study, a polymer‐stabilized cholesteric liquid crystal is used to address this requirement. A varying DC voltage is applied, and the working band is increased over eightfold owing to the electric‐induced gradient pitch of the polymer network. Thus, the working band of an OAM processor is reversibly switched between narrowband and broadband states. An OAM‐multiplexing hologram is designed for parallel OAM encoding and decoding, enabling a wavelength‐division‐multiplexing compatible approach for in situ and non‐destructive OAM processing. The proposed design offers a promising solution for the on‐demand tailoring of working bands in liquid crystal planar optics and can promote advancements in massive information transmission and large‐capacity data processing. Optical orbital angular momentum (OAM) processors with electrically tailored working bands are proposed based on polymer‐stabilized cholesteric liquid crystals. The photonic bandgap can be extended from 41 to 350 nm, enabling OAM‐based mode‐division multiplexing compatible with wavelength‐division multiplexing. This study is promising for large‐capacity optical communication and parallel information processing.</description><subject>Angular momentum</subject><subject>Broadband</subject><subject>Cholesteric liquid crystals</subject><subject>Data processing</subject><subject>geometric phase</subject><subject>Microprocessors</subject><subject>Multiplexing</subject><subject>Narrowband</subject><subject>orbital angular momentum</subject><subject>Phase modulation</subject><subject>photoalignment</subject><subject>Polymers</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTrF9-bDHUpUPqSgVKmK0HMcpKW4c7ERV_z2pisrILe8Nz3MnvQjdUjKhhLB72zo_YYQxQgmFMzSiPIWIcyHOTzsnl-gqhA0hyTDpCK3ytqu1sjj3Rd0NOW3WvVUev7qtabp-i5feaROC8wHv6u4Tz63RnT84do9XqrbOmxJ_OP9VN2v8oJoyXKOLStlgbn5zjN4f56vZc7TIn15m00WkgWYQ6TQ13GQMdAlxoTRlmRZVBWUBcVLEiWAZI7zMdKpIWYEBIUjKBCTU0EIDwBjdHe-23n33JnRy43rfDC8l4wBZlhIeD9TkSGnvQvCmkq2vt8rvJSXy0Jw8NCdPzQ2COAq72pr9P7RcLPO3P_cHC6hyug</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Xu, Chun‐Ting</creator><creator>Zhang, De‐Wei</creator><creator>Yuan, Rui</creator><creator>Chen, Quan‐Ming</creator><creator>Liang, Xiao</creator><creator>Hu, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1255-9453</orcidid></search><sort><creationdate>202307</creationdate><title>Optical Orbital Angular Momentum Processors with Electrically Tailored Working Bands</title><author>Xu, Chun‐Ting ; Zhang, De‐Wei ; Yuan, Rui ; Chen, Quan‐Ming ; Liang, Xiao ; Hu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-c66e8e723cd34bac127c9ff3db345b45927208d7c6a0df3e3990629351e1bc333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angular momentum</topic><topic>Broadband</topic><topic>Cholesteric liquid crystals</topic><topic>Data processing</topic><topic>geometric phase</topic><topic>Microprocessors</topic><topic>Multiplexing</topic><topic>Narrowband</topic><topic>orbital angular momentum</topic><topic>Phase modulation</topic><topic>photoalignment</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chun‐Ting</creatorcontrib><creatorcontrib>Zhang, De‐Wei</creatorcontrib><creatorcontrib>Yuan, Rui</creatorcontrib><creatorcontrib>Chen, Quan‐Ming</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chun‐Ting</au><au>Zhang, De‐Wei</au><au>Yuan, Rui</au><au>Chen, Quan‐Ming</au><au>Liang, Xiao</au><au>Hu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Orbital Angular Momentum Processors with Electrically Tailored Working Bands</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2023-07</date><risdate>2023</risdate><volume>17</volume><issue>7</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Novel options for multiplexing, such as orbital angular momentum (OAM), are sought to satisfy the explosive growth of information capacity. Consequently, spatial phase modulation with on‐demand tailoring of working bands is increasingly investigated. In this study, a polymer‐stabilized cholesteric liquid crystal is used to address this requirement. A varying DC voltage is applied, and the working band is increased over eightfold owing to the electric‐induced gradient pitch of the polymer network. Thus, the working band of an OAM processor is reversibly switched between narrowband and broadband states. An OAM‐multiplexing hologram is designed for parallel OAM encoding and decoding, enabling a wavelength‐division‐multiplexing compatible approach for in situ and non‐destructive OAM processing. The proposed design offers a promising solution for the on‐demand tailoring of working bands in liquid crystal planar optics and can promote advancements in massive information transmission and large‐capacity data processing. Optical orbital angular momentum (OAM) processors with electrically tailored working bands are proposed based on polymer‐stabilized cholesteric liquid crystals. The photonic bandgap can be extended from 41 to 350 nm, enabling OAM‐based mode‐division multiplexing compatible with wavelength‐division multiplexing. This study is promising for large‐capacity optical communication and parallel information processing.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202201013</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1255-9453</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2023-07, Vol.17 (7), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2833776084
source Wiley Online Library Journals Frontfile Complete
subjects Angular momentum
Broadband
Cholesteric liquid crystals
Data processing
geometric phase
Microprocessors
Multiplexing
Narrowband
orbital angular momentum
Phase modulation
photoalignment
Polymers
title Optical Orbital Angular Momentum Processors with Electrically Tailored Working Bands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Orbital%20Angular%20Momentum%20Processors%20with%20Electrically%20Tailored%20Working%20Bands&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Xu,%20Chun%E2%80%90Ting&rft.date=2023-07&rft.volume=17&rft.issue=7&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202201013&rft_dat=%3Cproquest_cross%3E2833776084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833776084&rft_id=info:pmid/&rfr_iscdi=true