Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network

Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acoustics Australia 2023-06, Vol.51 (2), p.265-278
Hauptverfasser: Hu, Ning, Zhao, Jiabao, Liu, Yibo, Wang, Maofa, Liu, Darui, Gong, Youping, Rao, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 2
container_start_page 265
container_title Acoustics Australia
container_volume 51
creator Hu, Ning
Zhao, Jiabao
Liu, Yibo
Wang, Maofa
Liu, Darui
Gong, Youping
Rao, Xin
description Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency. As a data-driven technology, neural networks have the ability to accurately predict the state of complex systems and can avoid complex physical modeling. In this study, a neural network model is built to predict ocean ambient noise spectrum level based on the data of sea water depth, temperature, salinity, sea surface wind speed and rainfall. The model is based on Genetic Algorithm (GA), Levenberg–Marquardt algorithm (LM) and Back Propagation (BP) neural network. The use of GA and LM makes the model combine the powerful mapping ability of neural network and the global search characteristic of GA. The model is used to predict the variation characteristics of spectral levels with frequency, depth, wind speed and rainfall rate, respectively. The predicted values are compared with the real values, for example, the RMSE values are all nearly below 2.04. The results show that the GA-LM-BP neural network prediction model is accurate and effective, and has flexible input factor scalability, which provides a paradigm framework for the establishment of multi-source and multi-factor spectral level prediction model of ocean ambient noise spectrum level based on deep learning.
doi_str_mv 10.1007/s40857-023-00295-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2833678110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833678110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-806afdd88b9b36056c9948e65589fa4941fbddb332896e75738c3f042fc408ea3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWGr_gE8Bn6O5bLLJY1u8wfYCKj6G7O6sbG03Ndkq_ntTK-iT8zLDcM4Z5kPonNFLRml-FTOqZU4oF4RSbiTRR2jAtDCEy5wd_5lP0SjGFU2luJJCDNDzwxaqPrg1LuAd1ngZoG6rvvUdnvk6LXyDFxW4Do83ZQtdj-e-jYAnLkKNk-p2TIoZmSzxHHb7mDn0Hz68nqGTxq0jjH76ED3dXD9O70ixuL2fjgtSCWZ6oqlyTV1rXZpSKCpVZUymQUmpTeMyk7GmrOtSCK6NglzmQleioRlvqvQ0ODFEF4fcbfBvO4i9Xfld6NJJy7UQKteM0aTiB1UVfIwBGrsN7caFT8uo3TO0B4Y2MbTfDK1OJnEwxSTuXiD8Rv_j-gIwA3HC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833678110</pqid></control><display><type>article</type><title>Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Ning ; Zhao, Jiabao ; Liu, Yibo ; Wang, Maofa ; Liu, Darui ; Gong, Youping ; Rao, Xin</creator><creatorcontrib>Hu, Ning ; Zhao, Jiabao ; Liu, Yibo ; Wang, Maofa ; Liu, Darui ; Gong, Youping ; Rao, Xin</creatorcontrib><description>Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency. As a data-driven technology, neural networks have the ability to accurately predict the state of complex systems and can avoid complex physical modeling. In this study, a neural network model is built to predict ocean ambient noise spectrum level based on the data of sea water depth, temperature, salinity, sea surface wind speed and rainfall. The model is based on Genetic Algorithm (GA), Levenberg–Marquardt algorithm (LM) and Back Propagation (BP) neural network. The use of GA and LM makes the model combine the powerful mapping ability of neural network and the global search characteristic of GA. The model is used to predict the variation characteristics of spectral levels with frequency, depth, wind speed and rainfall rate, respectively. The predicted values are compared with the real values, for example, the RMSE values are all nearly below 2.04. The results show that the GA-LM-BP neural network prediction model is accurate and effective, and has flexible input factor scalability, which provides a paradigm framework for the establishment of multi-source and multi-factor spectral level prediction model of ocean ambient noise spectrum level based on deep learning.</description><identifier>ISSN: 1839-2571</identifier><identifier>ISSN: 0814-6039</identifier><identifier>EISSN: 1839-2571</identifier><identifier>DOI: 10.1007/s40857-023-00295-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Acoustics ; Back propagation networks ; Complex systems ; Engineering ; Engineering Acoustics ; Genetic algorithms ; Machine learning ; Neural networks ; Noise Control ; Noise prediction ; Original Paper ; Prediction models ; Rainfall ; Seawater ; Surface wind ; Water depth ; Wind speed</subject><ispartof>Acoustics Australia, 2023-06, Vol.51 (2), p.265-278</ispartof><rights>Australian Acoustical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-806afdd88b9b36056c9948e65589fa4941fbddb332896e75738c3f042fc408ea3</citedby><cites>FETCH-LOGICAL-c319t-806afdd88b9b36056c9948e65589fa4941fbddb332896e75738c3f042fc408ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40857-023-00295-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40857-023-00295-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hu, Ning</creatorcontrib><creatorcontrib>Zhao, Jiabao</creatorcontrib><creatorcontrib>Liu, Yibo</creatorcontrib><creatorcontrib>Wang, Maofa</creatorcontrib><creatorcontrib>Liu, Darui</creatorcontrib><creatorcontrib>Gong, Youping</creatorcontrib><creatorcontrib>Rao, Xin</creatorcontrib><title>Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network</title><title>Acoustics Australia</title><addtitle>Acoust Aust</addtitle><description>Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency. As a data-driven technology, neural networks have the ability to accurately predict the state of complex systems and can avoid complex physical modeling. In this study, a neural network model is built to predict ocean ambient noise spectrum level based on the data of sea water depth, temperature, salinity, sea surface wind speed and rainfall. The model is based on Genetic Algorithm (GA), Levenberg–Marquardt algorithm (LM) and Back Propagation (BP) neural network. The use of GA and LM makes the model combine the powerful mapping ability of neural network and the global search characteristic of GA. The model is used to predict the variation characteristics of spectral levels with frequency, depth, wind speed and rainfall rate, respectively. The predicted values are compared with the real values, for example, the RMSE values are all nearly below 2.04. The results show that the GA-LM-BP neural network prediction model is accurate and effective, and has flexible input factor scalability, which provides a paradigm framework for the establishment of multi-source and multi-factor spectral level prediction model of ocean ambient noise spectrum level based on deep learning.</description><subject>Acoustics</subject><subject>Back propagation networks</subject><subject>Complex systems</subject><subject>Engineering</subject><subject>Engineering Acoustics</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise Control</subject><subject>Noise prediction</subject><subject>Original Paper</subject><subject>Prediction models</subject><subject>Rainfall</subject><subject>Seawater</subject><subject>Surface wind</subject><subject>Water depth</subject><subject>Wind speed</subject><issn>1839-2571</issn><issn>0814-6039</issn><issn>1839-2571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWGr_gE8Bn6O5bLLJY1u8wfYCKj6G7O6sbG03Ndkq_ntTK-iT8zLDcM4Z5kPonNFLRml-FTOqZU4oF4RSbiTRR2jAtDCEy5wd_5lP0SjGFU2luJJCDNDzwxaqPrg1LuAd1ngZoG6rvvUdnvk6LXyDFxW4Do83ZQtdj-e-jYAnLkKNk-p2TIoZmSzxHHb7mDn0Hz68nqGTxq0jjH76ED3dXD9O70ixuL2fjgtSCWZ6oqlyTV1rXZpSKCpVZUymQUmpTeMyk7GmrOtSCK6NglzmQleioRlvqvQ0ODFEF4fcbfBvO4i9Xfld6NJJy7UQKteM0aTiB1UVfIwBGrsN7caFT8uo3TO0B4Y2MbTfDK1OJnEwxSTuXiD8Rv_j-gIwA3HC</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hu, Ning</creator><creator>Zhao, Jiabao</creator><creator>Liu, Yibo</creator><creator>Wang, Maofa</creator><creator>Liu, Darui</creator><creator>Gong, Youping</creator><creator>Rao, Xin</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network</title><author>Hu, Ning ; Zhao, Jiabao ; Liu, Yibo ; Wang, Maofa ; Liu, Darui ; Gong, Youping ; Rao, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-806afdd88b9b36056c9948e65589fa4941fbddb332896e75738c3f042fc408ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Back propagation networks</topic><topic>Complex systems</topic><topic>Engineering</topic><topic>Engineering Acoustics</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise Control</topic><topic>Noise prediction</topic><topic>Original Paper</topic><topic>Prediction models</topic><topic>Rainfall</topic><topic>Seawater</topic><topic>Surface wind</topic><topic>Water depth</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ning</creatorcontrib><creatorcontrib>Zhao, Jiabao</creatorcontrib><creatorcontrib>Liu, Yibo</creatorcontrib><creatorcontrib>Wang, Maofa</creatorcontrib><creatorcontrib>Liu, Darui</creatorcontrib><creatorcontrib>Gong, Youping</creatorcontrib><creatorcontrib>Rao, Xin</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustics Australia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ning</au><au>Zhao, Jiabao</au><au>Liu, Yibo</au><au>Wang, Maofa</au><au>Liu, Darui</au><au>Gong, Youping</au><au>Rao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network</atitle><jtitle>Acoustics Australia</jtitle><stitle>Acoust Aust</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>51</volume><issue>2</issue><spage>265</spage><epage>278</epage><pages>265-278</pages><issn>1839-2571</issn><issn>0814-6039</issn><eissn>1839-2571</eissn><abstract>Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency. As a data-driven technology, neural networks have the ability to accurately predict the state of complex systems and can avoid complex physical modeling. In this study, a neural network model is built to predict ocean ambient noise spectrum level based on the data of sea water depth, temperature, salinity, sea surface wind speed and rainfall. The model is based on Genetic Algorithm (GA), Levenberg–Marquardt algorithm (LM) and Back Propagation (BP) neural network. The use of GA and LM makes the model combine the powerful mapping ability of neural network and the global search characteristic of GA. The model is used to predict the variation characteristics of spectral levels with frequency, depth, wind speed and rainfall rate, respectively. The predicted values are compared with the real values, for example, the RMSE values are all nearly below 2.04. The results show that the GA-LM-BP neural network prediction model is accurate and effective, and has flexible input factor scalability, which provides a paradigm framework for the establishment of multi-source and multi-factor spectral level prediction model of ocean ambient noise spectrum level based on deep learning.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40857-023-00295-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1839-2571
ispartof Acoustics Australia, 2023-06, Vol.51 (2), p.265-278
issn 1839-2571
0814-6039
1839-2571
language eng
recordid cdi_proquest_journals_2833678110
source SpringerLink Journals - AutoHoldings
subjects Acoustics
Back propagation networks
Complex systems
Engineering
Engineering Acoustics
Genetic algorithms
Machine learning
Neural networks
Noise Control
Noise prediction
Original Paper
Prediction models
Rainfall
Seawater
Surface wind
Water depth
Wind speed
title Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Level%20Prediction%20Model%20of%20Ocean%20Ambient%20Noise%20Based%20on%20GA-LM-BP%20Neural%20Network&rft.jtitle=Acoustics%20Australia&rft.au=Hu,%20Ning&rft.date=2023-06-01&rft.volume=51&rft.issue=2&rft.spage=265&rft.epage=278&rft.pages=265-278&rft.issn=1839-2571&rft.eissn=1839-2571&rft_id=info:doi/10.1007/s40857-023-00295-8&rft_dat=%3Cproquest_cross%3E2833678110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833678110&rft_id=info:pmid/&rfr_iscdi=true