Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network
Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency....
Gespeichert in:
Veröffentlicht in: | Acoustics Australia 2023-06, Vol.51 (2), p.265-278 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 2 |
container_start_page | 265 |
container_title | Acoustics Australia |
container_volume | 51 |
creator | Hu, Ning Zhao, Jiabao Liu, Yibo Wang, Maofa Liu, Darui Gong, Youping Rao, Xin |
description | Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency. As a data-driven technology, neural networks have the ability to accurately predict the state of complex systems and can avoid complex physical modeling. In this study, a neural network model is built to predict ocean ambient noise spectrum level based on the data of sea water depth, temperature, salinity, sea surface wind speed and rainfall. The model is based on Genetic Algorithm (GA), Levenberg–Marquardt algorithm (LM) and Back Propagation (BP) neural network. The use of GA and LM makes the model combine the powerful mapping ability of neural network and the global search characteristic of GA. The model is used to predict the variation characteristics of spectral levels with frequency, depth, wind speed and rainfall rate, respectively. The predicted values are compared with the real values, for example, the RMSE values are all nearly below 2.04. The results show that the GA-LM-BP neural network prediction model is accurate and effective, and has flexible input factor scalability, which provides a paradigm framework for the establishment of multi-source and multi-factor spectral level prediction model of ocean ambient noise spectrum level based on deep learning. |
doi_str_mv | 10.1007/s40857-023-00295-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2833678110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833678110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-806afdd88b9b36056c9948e65589fa4941fbddb332896e75738c3f042fc408ea3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWGr_gE8Bn6O5bLLJY1u8wfYCKj6G7O6sbG03Ndkq_ntTK-iT8zLDcM4Z5kPonNFLRml-FTOqZU4oF4RSbiTRR2jAtDCEy5wd_5lP0SjGFU2luJJCDNDzwxaqPrg1LuAd1ngZoG6rvvUdnvk6LXyDFxW4Do83ZQtdj-e-jYAnLkKNk-p2TIoZmSzxHHb7mDn0Hz68nqGTxq0jjH76ED3dXD9O70ixuL2fjgtSCWZ6oqlyTV1rXZpSKCpVZUymQUmpTeMyk7GmrOtSCK6NglzmQleioRlvqvQ0ODFEF4fcbfBvO4i9Xfld6NJJy7UQKteM0aTiB1UVfIwBGrsN7caFT8uo3TO0B4Y2MbTfDK1OJnEwxSTuXiD8Rv_j-gIwA3HC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833678110</pqid></control><display><type>article</type><title>Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Ning ; Zhao, Jiabao ; Liu, Yibo ; Wang, Maofa ; Liu, Darui ; Gong, Youping ; Rao, Xin</creator><creatorcontrib>Hu, Ning ; Zhao, Jiabao ; Liu, Yibo ; Wang, Maofa ; Liu, Darui ; Gong, Youping ; Rao, Xin</creatorcontrib><description>Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency. As a data-driven technology, neural networks have the ability to accurately predict the state of complex systems and can avoid complex physical modeling. In this study, a neural network model is built to predict ocean ambient noise spectrum level based on the data of sea water depth, temperature, salinity, sea surface wind speed and rainfall. The model is based on Genetic Algorithm (GA), Levenberg–Marquardt algorithm (LM) and Back Propagation (BP) neural network. The use of GA and LM makes the model combine the powerful mapping ability of neural network and the global search characteristic of GA. The model is used to predict the variation characteristics of spectral levels with frequency, depth, wind speed and rainfall rate, respectively. The predicted values are compared with the real values, for example, the RMSE values are all nearly below 2.04. The results show that the GA-LM-BP neural network prediction model is accurate and effective, and has flexible input factor scalability, which provides a paradigm framework for the establishment of multi-source and multi-factor spectral level prediction model of ocean ambient noise spectrum level based on deep learning.</description><identifier>ISSN: 1839-2571</identifier><identifier>ISSN: 0814-6039</identifier><identifier>EISSN: 1839-2571</identifier><identifier>DOI: 10.1007/s40857-023-00295-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Acoustics ; Back propagation networks ; Complex systems ; Engineering ; Engineering Acoustics ; Genetic algorithms ; Machine learning ; Neural networks ; Noise Control ; Noise prediction ; Original Paper ; Prediction models ; Rainfall ; Seawater ; Surface wind ; Water depth ; Wind speed</subject><ispartof>Acoustics Australia, 2023-06, Vol.51 (2), p.265-278</ispartof><rights>Australian Acoustical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-806afdd88b9b36056c9948e65589fa4941fbddb332896e75738c3f042fc408ea3</citedby><cites>FETCH-LOGICAL-c319t-806afdd88b9b36056c9948e65589fa4941fbddb332896e75738c3f042fc408ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40857-023-00295-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40857-023-00295-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hu, Ning</creatorcontrib><creatorcontrib>Zhao, Jiabao</creatorcontrib><creatorcontrib>Liu, Yibo</creatorcontrib><creatorcontrib>Wang, Maofa</creatorcontrib><creatorcontrib>Liu, Darui</creatorcontrib><creatorcontrib>Gong, Youping</creatorcontrib><creatorcontrib>Rao, Xin</creatorcontrib><title>Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network</title><title>Acoustics Australia</title><addtitle>Acoust Aust</addtitle><description>Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency. As a data-driven technology, neural networks have the ability to accurately predict the state of complex systems and can avoid complex physical modeling. In this study, a neural network model is built to predict ocean ambient noise spectrum level based on the data of sea water depth, temperature, salinity, sea surface wind speed and rainfall. The model is based on Genetic Algorithm (GA), Levenberg–Marquardt algorithm (LM) and Back Propagation (BP) neural network. The use of GA and LM makes the model combine the powerful mapping ability of neural network and the global search characteristic of GA. The model is used to predict the variation characteristics of spectral levels with frequency, depth, wind speed and rainfall rate, respectively. The predicted values are compared with the real values, for example, the RMSE values are all nearly below 2.04. The results show that the GA-LM-BP neural network prediction model is accurate and effective, and has flexible input factor scalability, which provides a paradigm framework for the establishment of multi-source and multi-factor spectral level prediction model of ocean ambient noise spectrum level based on deep learning.</description><subject>Acoustics</subject><subject>Back propagation networks</subject><subject>Complex systems</subject><subject>Engineering</subject><subject>Engineering Acoustics</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise Control</subject><subject>Noise prediction</subject><subject>Original Paper</subject><subject>Prediction models</subject><subject>Rainfall</subject><subject>Seawater</subject><subject>Surface wind</subject><subject>Water depth</subject><subject>Wind speed</subject><issn>1839-2571</issn><issn>0814-6039</issn><issn>1839-2571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWGr_gE8Bn6O5bLLJY1u8wfYCKj6G7O6sbG03Ndkq_ntTK-iT8zLDcM4Z5kPonNFLRml-FTOqZU4oF4RSbiTRR2jAtDCEy5wd_5lP0SjGFU2luJJCDNDzwxaqPrg1LuAd1ngZoG6rvvUdnvk6LXyDFxW4Do83ZQtdj-e-jYAnLkKNk-p2TIoZmSzxHHb7mDn0Hz68nqGTxq0jjH76ED3dXD9O70ixuL2fjgtSCWZ6oqlyTV1rXZpSKCpVZUymQUmpTeMyk7GmrOtSCK6NglzmQleioRlvqvQ0ODFEF4fcbfBvO4i9Xfld6NJJy7UQKteM0aTiB1UVfIwBGrsN7caFT8uo3TO0B4Y2MbTfDK1OJnEwxSTuXiD8Rv_j-gIwA3HC</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hu, Ning</creator><creator>Zhao, Jiabao</creator><creator>Liu, Yibo</creator><creator>Wang, Maofa</creator><creator>Liu, Darui</creator><creator>Gong, Youping</creator><creator>Rao, Xin</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network</title><author>Hu, Ning ; Zhao, Jiabao ; Liu, Yibo ; Wang, Maofa ; Liu, Darui ; Gong, Youping ; Rao, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-806afdd88b9b36056c9948e65589fa4941fbddb332896e75738c3f042fc408ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Back propagation networks</topic><topic>Complex systems</topic><topic>Engineering</topic><topic>Engineering Acoustics</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise Control</topic><topic>Noise prediction</topic><topic>Original Paper</topic><topic>Prediction models</topic><topic>Rainfall</topic><topic>Seawater</topic><topic>Surface wind</topic><topic>Water depth</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ning</creatorcontrib><creatorcontrib>Zhao, Jiabao</creatorcontrib><creatorcontrib>Liu, Yibo</creatorcontrib><creatorcontrib>Wang, Maofa</creatorcontrib><creatorcontrib>Liu, Darui</creatorcontrib><creatorcontrib>Gong, Youping</creatorcontrib><creatorcontrib>Rao, Xin</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustics Australia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ning</au><au>Zhao, Jiabao</au><au>Liu, Yibo</au><au>Wang, Maofa</au><au>Liu, Darui</au><au>Gong, Youping</au><au>Rao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network</atitle><jtitle>Acoustics Australia</jtitle><stitle>Acoust Aust</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>51</volume><issue>2</issue><spage>265</spage><epage>278</epage><pages>265-278</pages><issn>1839-2571</issn><issn>0814-6039</issn><eissn>1839-2571</eissn><abstract>Efficient and accurate prediction of ocean ambient noise spectrum level is very important to improve the detection capability of sonar equipment. The more factors taken into account, the more complex the establishment and application of the prediction model, which makes a low prediction efficiency. As a data-driven technology, neural networks have the ability to accurately predict the state of complex systems and can avoid complex physical modeling. In this study, a neural network model is built to predict ocean ambient noise spectrum level based on the data of sea water depth, temperature, salinity, sea surface wind speed and rainfall. The model is based on Genetic Algorithm (GA), Levenberg–Marquardt algorithm (LM) and Back Propagation (BP) neural network. The use of GA and LM makes the model combine the powerful mapping ability of neural network and the global search characteristic of GA. The model is used to predict the variation characteristics of spectral levels with frequency, depth, wind speed and rainfall rate, respectively. The predicted values are compared with the real values, for example, the RMSE values are all nearly below 2.04. The results show that the GA-LM-BP neural network prediction model is accurate and effective, and has flexible input factor scalability, which provides a paradigm framework for the establishment of multi-source and multi-factor spectral level prediction model of ocean ambient noise spectrum level based on deep learning.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40857-023-00295-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1839-2571 |
ispartof | Acoustics Australia, 2023-06, Vol.51 (2), p.265-278 |
issn | 1839-2571 0814-6039 1839-2571 |
language | eng |
recordid | cdi_proquest_journals_2833678110 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acoustics Back propagation networks Complex systems Engineering Engineering Acoustics Genetic algorithms Machine learning Neural networks Noise Control Noise prediction Original Paper Prediction models Rainfall Seawater Surface wind Water depth Wind speed |
title | Spectral Level Prediction Model of Ocean Ambient Noise Based on GA-LM-BP Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Level%20Prediction%20Model%20of%20Ocean%20Ambient%20Noise%20Based%20on%20GA-LM-BP%20Neural%20Network&rft.jtitle=Acoustics%20Australia&rft.au=Hu,%20Ning&rft.date=2023-06-01&rft.volume=51&rft.issue=2&rft.spage=265&rft.epage=278&rft.pages=265-278&rft.issn=1839-2571&rft.eissn=1839-2571&rft_id=info:doi/10.1007/s40857-023-00295-8&rft_dat=%3Cproquest_cross%3E2833678110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833678110&rft_id=info:pmid/&rfr_iscdi=true |