Tunable Reflective Electromagnetic Wave Beam Scattering for Mid-Infrared Coded Metamaterials
A digital coded metasurface uses a digital state to represent electromagnetic parameters and directly connects digital technology at the information level with metasurface units at the physical level. Based on the dynamic properties of the phase-change material, a tunable reflective coded metasurfac...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2023-08, Vol.52 (8), p.5521-5533 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5533 |
---|---|
container_issue | 8 |
container_start_page | 5521 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Zhang, Peng Lin, Hai Han, Junling Lu, Jianxun Li, Chenxia |
description | A digital coded metasurface uses a digital state to represent electromagnetic parameters and directly connects digital technology at the information level with metasurface units at the physical level. Based on the dynamic properties of the phase-change material, a tunable reflective coded metasurface was constructed by integrating the phase-change material into coded units. By using the parameter scanning optimization method, the geometric phase element was optimized to construct different coded sequences. In order to flexibly regulate reflected beams, the Fourier convolution principle in digital signal processing was introduced. Using the Fourier convolution addition operation on two different sequences of the coded metasurface, a synthetic coded sequence was obtained to achieve flexible regulation of beam reflection. Based on the tunable properties of the phase-change material, the dynamic multi-angle reflection of a coded metasurface can be achieved by a different coding convolution operation. |
doi_str_mv | 10.1007/s11664-023-10479-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2833354687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833354687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-42038f651a15741571897fca4418fe4247dd906b54e232b784559b40d667cadf3</originalsourceid><addsrcrecordid>eNp9UMtKw0AUHUTBWv0BVwHXo3PnnaUWH4UWQSu6EIZJMlNSmqTOpIJ_78QI7lzcJ-ecyz0InQO5BELUVQSQkmNCGQbCVY7VAZqA4GnU8u0QTQiTgAVl4hidxLghBARomKD31b61xdZlT85vXdnXny67HZrQNXbdur4us1ebljfONtlzafvehbpdZ74L2bKu8Lz1wQZXZbOuSnnpetvYAWO38RQd-VTc2W-dope729XsAS8e7-ez6wUuqSI95pQw7aUAC0LxFKBz5UvLOWjvOOWqqnIiC8EdZbRQmguRF5xUUqrSVp5N0cWouwvdx97F3my6fWjTSUM1Y0xwqVVC0RFVhi7G4LzZhbqx4csAMYOLZnTRJBfNj4tmILGRFHfD2y78Sf_D-gZvl3Qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833354687</pqid></control><display><type>article</type><title>Tunable Reflective Electromagnetic Wave Beam Scattering for Mid-Infrared Coded Metamaterials</title><source>SpringerNature Complete Journals</source><creator>Zhang, Peng ; Lin, Hai ; Han, Junling ; Lu, Jianxun ; Li, Chenxia</creator><creatorcontrib>Zhang, Peng ; Lin, Hai ; Han, Junling ; Lu, Jianxun ; Li, Chenxia</creatorcontrib><description>A digital coded metasurface uses a digital state to represent electromagnetic parameters and directly connects digital technology at the information level with metasurface units at the physical level. Based on the dynamic properties of the phase-change material, a tunable reflective coded metasurface was constructed by integrating the phase-change material into coded units. By using the parameter scanning optimization method, the geometric phase element was optimized to construct different coded sequences. In order to flexibly regulate reflected beams, the Fourier convolution principle in digital signal processing was introduced. Using the Fourier convolution addition operation on two different sequences of the coded metasurface, a synthetic coded sequence was obtained to achieve flexible regulation of beam reflection. Based on the tunable properties of the phase-change material, the dynamic multi-angle reflection of a coded metasurface can be achieved by a different coding convolution operation.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10479-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angle of reflection ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Convolution ; Digital signal processing ; Electromagnetic radiation ; Electronics and Microelectronics ; Instrumentation ; Materials Science ; Metamaterials ; Metasurfaces ; Optical and Electronic Materials ; Optimization ; Original Research Article ; Parameters ; Phase change materials ; Phase transitions ; Sequences ; Signal processing ; Solid State Physics ; Temperature</subject><ispartof>Journal of electronic materials, 2023-08, Vol.52 (8), p.5521-5533</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-42038f651a15741571897fca4418fe4247dd906b54e232b784559b40d667cadf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10479-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10479-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><creatorcontrib>Han, Junling</creatorcontrib><creatorcontrib>Lu, Jianxun</creatorcontrib><creatorcontrib>Li, Chenxia</creatorcontrib><title>Tunable Reflective Electromagnetic Wave Beam Scattering for Mid-Infrared Coded Metamaterials</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>A digital coded metasurface uses a digital state to represent electromagnetic parameters and directly connects digital technology at the information level with metasurface units at the physical level. Based on the dynamic properties of the phase-change material, a tunable reflective coded metasurface was constructed by integrating the phase-change material into coded units. By using the parameter scanning optimization method, the geometric phase element was optimized to construct different coded sequences. In order to flexibly regulate reflected beams, the Fourier convolution principle in digital signal processing was introduced. Using the Fourier convolution addition operation on two different sequences of the coded metasurface, a synthetic coded sequence was obtained to achieve flexible regulation of beam reflection. Based on the tunable properties of the phase-change material, the dynamic multi-angle reflection of a coded metasurface can be achieved by a different coding convolution operation.</description><subject>Angle of reflection</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Convolution</subject><subject>Digital signal processing</subject><subject>Electromagnetic radiation</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Metamaterials</subject><subject>Metasurfaces</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Original Research Article</subject><subject>Parameters</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Sequences</subject><subject>Signal processing</subject><subject>Solid State Physics</subject><subject>Temperature</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMtKw0AUHUTBWv0BVwHXo3PnnaUWH4UWQSu6EIZJMlNSmqTOpIJ_78QI7lzcJ-ecyz0InQO5BELUVQSQkmNCGQbCVY7VAZqA4GnU8u0QTQiTgAVl4hidxLghBARomKD31b61xdZlT85vXdnXny67HZrQNXbdur4us1ebljfONtlzafvehbpdZ74L2bKu8Lz1wQZXZbOuSnnpetvYAWO38RQd-VTc2W-dope729XsAS8e7-ez6wUuqSI95pQw7aUAC0LxFKBz5UvLOWjvOOWqqnIiC8EdZbRQmguRF5xUUqrSVp5N0cWouwvdx97F3my6fWjTSUM1Y0xwqVVC0RFVhi7G4LzZhbqx4csAMYOLZnTRJBfNj4tmILGRFHfD2y78Sf_D-gZvl3Qg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhang, Peng</creator><creator>Lin, Hai</creator><creator>Han, Junling</creator><creator>Lu, Jianxun</creator><creator>Li, Chenxia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230801</creationdate><title>Tunable Reflective Electromagnetic Wave Beam Scattering for Mid-Infrared Coded Metamaterials</title><author>Zhang, Peng ; Lin, Hai ; Han, Junling ; Lu, Jianxun ; Li, Chenxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-42038f651a15741571897fca4418fe4247dd906b54e232b784559b40d667cadf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angle of reflection</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Convolution</topic><topic>Digital signal processing</topic><topic>Electromagnetic radiation</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Metamaterials</topic><topic>Metasurfaces</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Original Research Article</topic><topic>Parameters</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Sequences</topic><topic>Signal processing</topic><topic>Solid State Physics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><creatorcontrib>Han, Junling</creatorcontrib><creatorcontrib>Lu, Jianxun</creatorcontrib><creatorcontrib>Li, Chenxia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peng</au><au>Lin, Hai</au><au>Han, Junling</au><au>Lu, Jianxun</au><au>Li, Chenxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Reflective Electromagnetic Wave Beam Scattering for Mid-Infrared Coded Metamaterials</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>52</volume><issue>8</issue><spage>5521</spage><epage>5533</epage><pages>5521-5533</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>A digital coded metasurface uses a digital state to represent electromagnetic parameters and directly connects digital technology at the information level with metasurface units at the physical level. Based on the dynamic properties of the phase-change material, a tunable reflective coded metasurface was constructed by integrating the phase-change material into coded units. By using the parameter scanning optimization method, the geometric phase element was optimized to construct different coded sequences. In order to flexibly regulate reflected beams, the Fourier convolution principle in digital signal processing was introduced. Using the Fourier convolution addition operation on two different sequences of the coded metasurface, a synthetic coded sequence was obtained to achieve flexible regulation of beam reflection. Based on the tunable properties of the phase-change material, the dynamic multi-angle reflection of a coded metasurface can be achieved by a different coding convolution operation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10479-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-08, Vol.52 (8), p.5521-5533 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2833354687 |
source | SpringerNature Complete Journals |
subjects | Angle of reflection Characterization and Evaluation of Materials Chemistry and Materials Science Convolution Digital signal processing Electromagnetic radiation Electronics and Microelectronics Instrumentation Materials Science Metamaterials Metasurfaces Optical and Electronic Materials Optimization Original Research Article Parameters Phase change materials Phase transitions Sequences Signal processing Solid State Physics Temperature |
title | Tunable Reflective Electromagnetic Wave Beam Scattering for Mid-Infrared Coded Metamaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Reflective%20Electromagnetic%20Wave%20Beam%20Scattering%20for%20Mid-Infrared%20Coded%20Metamaterials&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Zhang,%20Peng&rft.date=2023-08-01&rft.volume=52&rft.issue=8&rft.spage=5521&rft.epage=5533&rft.pages=5521-5533&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10479-7&rft_dat=%3Cproquest_cross%3E2833354687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833354687&rft_id=info:pmid/&rfr_iscdi=true |