Two-dimensional 4f magnetic EuSn2X2 (X = P, As) monolayers: A first-principles study

Two-dimensional (2D) ferromagnetic semiconductors (FMSs) hold exciting and promising potential for application in spintronic devices at the nanoscale. Currently, most 2D FMSs are based on 3d electrons; 4f electrons can provide nontrivial magnetism but have been much less studied to date. This paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-07, Vol.123 (1)
Hauptverfasser: Bai, Yihang, Wu, Yaxuan, Jia, Chaobin, Hou, Lipeng, Wang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Applied physics letters
container_volume 123
creator Bai, Yihang
Wu, Yaxuan
Jia, Chaobin
Hou, Lipeng
Wang, Bing
description Two-dimensional (2D) ferromagnetic semiconductors (FMSs) hold exciting and promising potential for application in spintronic devices at the nanoscale. Currently, most 2D FMSs are based on 3d electrons; 4f electrons can provide nontrivial magnetism but have been much less studied to date. This paper presents a theoretical study, via first-principles calculations, of EuSn2X2 (X = P, As) monolayers based on rare-earth cations with f-electrons. The results show that EuSn2X2 monolayers possess a large magnetization (7 μB/Eu), a controllable magnetic anisotropy energy, and a unique d-electron-mediated f–f exchange mechanism. Both types of EuSn2X2 (X = P, As) monolayers are FMSs with indirect bandgaps of 1.00 and 0.99 eV, respectively, based on the Heyd–Scuseria–Ernzerhof (HSE06) method, which can be transform to direct bandgap semiconductors under biaxial strain. Interestingly, under the latter, spin–orbit coupling interaction gradually replaces the dipole–dipole interaction in the dominant position of magnetic anisotropy, resulting in the magnetic easy axis changing from in-plane to the more desirable out-of-plane. Considering their excellent dynamic, thermal, and mechanical stabilities and small cleavage energy, these EuSn2X2 monolayers can be exfoliated from their synthesized bulk. Our study not only helps to understand the properties of 2D 4f rare-earth magnets but also signposts a route toward improving the performance of EuSn2X2 monolayers in nano-electronic devices.
doi_str_mv 10.1063/5.0152064
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2833283950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833283950</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-a18f54907481b927e60e5a74a992c36249d383ad8ba3a2cf93a836aa6e8395ad3</originalsourceid><addsrcrecordid>eNotkM1KAzEUhYMoWKsL3yDgRsWpSe4kkwguSqk_UFCwQnfD7UxGUubPSQbpzq2v6ZM4pS4uhwsfh3MOIeecTThTcCsnjEvBVHxARpwlSQSc60MyYoxBpIzkx-TE-83wSgEwIqvlVxPlrrK1d02NJY0LWuFHbYPL6Lx_q8VK0MvV7_fP_XCvN3Tqr2jV1E2JW9v5Ozqlhet8iNrO1ZlrS-upD32-PSVHBZbenv3rmLw_zJezp2jx8vg8my6iVkgIEXJdyNiwJNZ8bURiFbMSkxiNERkoEZscNGCu1wgossIAalCIymowEnMYk4u9b9s1n731Id00fTc08anQAGKHsYG63lM-cwHDUDUdAlfYbVPO0t1yqUz_l4M_FmtfWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833283950</pqid></control><display><type>article</type><title>Two-dimensional 4f magnetic EuSn2X2 (X = P, As) monolayers: A first-principles study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bai, Yihang ; Wu, Yaxuan ; Jia, Chaobin ; Hou, Lipeng ; Wang, Bing</creator><creatorcontrib>Bai, Yihang ; Wu, Yaxuan ; Jia, Chaobin ; Hou, Lipeng ; Wang, Bing</creatorcontrib><description>Two-dimensional (2D) ferromagnetic semiconductors (FMSs) hold exciting and promising potential for application in spintronic devices at the nanoscale. Currently, most 2D FMSs are based on 3d electrons; 4f electrons can provide nontrivial magnetism but have been much less studied to date. This paper presents a theoretical study, via first-principles calculations, of EuSn2X2 (X = P, As) monolayers based on rare-earth cations with f-electrons. The results show that EuSn2X2 monolayers possess a large magnetization (7 μB/Eu), a controllable magnetic anisotropy energy, and a unique d-electron-mediated f–f exchange mechanism. Both types of EuSn2X2 (X = P, As) monolayers are FMSs with indirect bandgaps of 1.00 and 0.99 eV, respectively, based on the Heyd–Scuseria–Ernzerhof (HSE06) method, which can be transform to direct bandgap semiconductors under biaxial strain. Interestingly, under the latter, spin–orbit coupling interaction gradually replaces the dipole–dipole interaction in the dominant position of magnetic anisotropy, resulting in the magnetic easy axis changing from in-plane to the more desirable out-of-plane. Considering their excellent dynamic, thermal, and mechanical stabilities and small cleavage energy, these EuSn2X2 monolayers can be exfoliated from their synthesized bulk. Our study not only helps to understand the properties of 2D 4f rare-earth magnets but also signposts a route toward improving the performance of EuSn2X2 monolayers in nano-electronic devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0152064</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Controllability ; Dipole interactions ; Electrons ; Energy gap ; Ferromagnetism ; First principles ; Magnetic anisotropy ; Magnetic properties ; Monolayers ; Nanoelectronics ; Nanotechnology devices ; Permanent magnets ; Rare earth elements ; Semiconductors ; Spin-orbit interactions</subject><ispartof>Applied physics letters, 2023-07, Vol.123 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0002-3325-1650 ; 0009-0001-5912-3633 ; 0000-0002-7489-3820 ; 0000-0003-2537-5805 ; 0009-0006-5489-4064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0152064$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,782,786,796,4516,27933,27934,76394</link.rule.ids></links><search><creatorcontrib>Bai, Yihang</creatorcontrib><creatorcontrib>Wu, Yaxuan</creatorcontrib><creatorcontrib>Jia, Chaobin</creatorcontrib><creatorcontrib>Hou, Lipeng</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><title>Two-dimensional 4f magnetic EuSn2X2 (X = P, As) monolayers: A first-principles study</title><title>Applied physics letters</title><description>Two-dimensional (2D) ferromagnetic semiconductors (FMSs) hold exciting and promising potential for application in spintronic devices at the nanoscale. Currently, most 2D FMSs are based on 3d electrons; 4f electrons can provide nontrivial magnetism but have been much less studied to date. This paper presents a theoretical study, via first-principles calculations, of EuSn2X2 (X = P, As) monolayers based on rare-earth cations with f-electrons. The results show that EuSn2X2 monolayers possess a large magnetization (7 μB/Eu), a controllable magnetic anisotropy energy, and a unique d-electron-mediated f–f exchange mechanism. Both types of EuSn2X2 (X = P, As) monolayers are FMSs with indirect bandgaps of 1.00 and 0.99 eV, respectively, based on the Heyd–Scuseria–Ernzerhof (HSE06) method, which can be transform to direct bandgap semiconductors under biaxial strain. Interestingly, under the latter, spin–orbit coupling interaction gradually replaces the dipole–dipole interaction in the dominant position of magnetic anisotropy, resulting in the magnetic easy axis changing from in-plane to the more desirable out-of-plane. Considering their excellent dynamic, thermal, and mechanical stabilities and small cleavage energy, these EuSn2X2 monolayers can be exfoliated from their synthesized bulk. Our study not only helps to understand the properties of 2D 4f rare-earth magnets but also signposts a route toward improving the performance of EuSn2X2 monolayers in nano-electronic devices.</description><subject>Applied physics</subject><subject>Controllability</subject><subject>Dipole interactions</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Magnetic anisotropy</subject><subject>Magnetic properties</subject><subject>Monolayers</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Permanent magnets</subject><subject>Rare earth elements</subject><subject>Semiconductors</subject><subject>Spin-orbit interactions</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEUhYMoWKsL3yDgRsWpSe4kkwguSqk_UFCwQnfD7UxGUubPSQbpzq2v6ZM4pS4uhwsfh3MOIeecTThTcCsnjEvBVHxARpwlSQSc60MyYoxBpIzkx-TE-83wSgEwIqvlVxPlrrK1d02NJY0LWuFHbYPL6Lx_q8VK0MvV7_fP_XCvN3Tqr2jV1E2JW9v5Ozqlhet8iNrO1ZlrS-upD32-PSVHBZbenv3rmLw_zJezp2jx8vg8my6iVkgIEXJdyNiwJNZ8bURiFbMSkxiNERkoEZscNGCu1wgossIAalCIymowEnMYk4u9b9s1n731Id00fTc08anQAGKHsYG63lM-cwHDUDUdAlfYbVPO0t1yqUz_l4M_FmtfWg</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Bai, Yihang</creator><creator>Wu, Yaxuan</creator><creator>Jia, Chaobin</creator><creator>Hou, Lipeng</creator><creator>Wang, Bing</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-3325-1650</orcidid><orcidid>https://orcid.org/0009-0001-5912-3633</orcidid><orcidid>https://orcid.org/0000-0002-7489-3820</orcidid><orcidid>https://orcid.org/0000-0003-2537-5805</orcidid><orcidid>https://orcid.org/0009-0006-5489-4064</orcidid></search><sort><creationdate>20230703</creationdate><title>Two-dimensional 4f magnetic EuSn2X2 (X = P, As) monolayers: A first-principles study</title><author>Bai, Yihang ; Wu, Yaxuan ; Jia, Chaobin ; Hou, Lipeng ; Wang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-a18f54907481b927e60e5a74a992c36249d383ad8ba3a2cf93a836aa6e8395ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Controllability</topic><topic>Dipole interactions</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Magnetic anisotropy</topic><topic>Magnetic properties</topic><topic>Monolayers</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Permanent magnets</topic><topic>Rare earth elements</topic><topic>Semiconductors</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yihang</creatorcontrib><creatorcontrib>Wu, Yaxuan</creatorcontrib><creatorcontrib>Jia, Chaobin</creatorcontrib><creatorcontrib>Hou, Lipeng</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yihang</au><au>Wu, Yaxuan</au><au>Jia, Chaobin</au><au>Hou, Lipeng</au><au>Wang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional 4f magnetic EuSn2X2 (X = P, As) monolayers: A first-principles study</atitle><jtitle>Applied physics letters</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>123</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Two-dimensional (2D) ferromagnetic semiconductors (FMSs) hold exciting and promising potential for application in spintronic devices at the nanoscale. Currently, most 2D FMSs are based on 3d electrons; 4f electrons can provide nontrivial magnetism but have been much less studied to date. This paper presents a theoretical study, via first-principles calculations, of EuSn2X2 (X = P, As) monolayers based on rare-earth cations with f-electrons. The results show that EuSn2X2 monolayers possess a large magnetization (7 μB/Eu), a controllable magnetic anisotropy energy, and a unique d-electron-mediated f–f exchange mechanism. Both types of EuSn2X2 (X = P, As) monolayers are FMSs with indirect bandgaps of 1.00 and 0.99 eV, respectively, based on the Heyd–Scuseria–Ernzerhof (HSE06) method, which can be transform to direct bandgap semiconductors under biaxial strain. Interestingly, under the latter, spin–orbit coupling interaction gradually replaces the dipole–dipole interaction in the dominant position of magnetic anisotropy, resulting in the magnetic easy axis changing from in-plane to the more desirable out-of-plane. Considering their excellent dynamic, thermal, and mechanical stabilities and small cleavage energy, these EuSn2X2 monolayers can be exfoliated from their synthesized bulk. Our study not only helps to understand the properties of 2D 4f rare-earth magnets but also signposts a route toward improving the performance of EuSn2X2 monolayers in nano-electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0152064</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0002-3325-1650</orcidid><orcidid>https://orcid.org/0009-0001-5912-3633</orcidid><orcidid>https://orcid.org/0000-0002-7489-3820</orcidid><orcidid>https://orcid.org/0000-0003-2537-5805</orcidid><orcidid>https://orcid.org/0009-0006-5489-4064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-07, Vol.123 (1)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2833283950
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Controllability
Dipole interactions
Electrons
Energy gap
Ferromagnetism
First principles
Magnetic anisotropy
Magnetic properties
Monolayers
Nanoelectronics
Nanotechnology devices
Permanent magnets
Rare earth elements
Semiconductors
Spin-orbit interactions
title Two-dimensional 4f magnetic EuSn2X2 (X = P, As) monolayers: A first-principles study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%204f%20magnetic%20EuSn2X2%20(X%E2%80%89=%E2%80%89P,%20As)%20monolayers:%20A%20first-principles%20study&rft.jtitle=Applied%20physics%20letters&rft.au=Bai,%20Yihang&rft.date=2023-07-03&rft.volume=123&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0152064&rft_dat=%3Cproquest_scita%3E2833283950%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833283950&rft_id=info:pmid/&rfr_iscdi=true