Joint Feature Target Detection Algorithm of Beak State Based on YOLOv5

Accurate grasp of chicken body temperature can effectively improve the success rate of caged chicken breeding, by monitoring the number of open-mouthed chickens as a percentage of the total number of chickens and can directly determine whether the chicken body temperature is appropriate. There is no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Zu, Linan, Chu, Xiaoyu, Wang, Qiaomei, Ju, Yunpeng, Zhang, Mingyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Zu, Linan
Chu, Xiaoyu
Wang, Qiaomei
Ju, Yunpeng
Zhang, Mingyue
description Accurate grasp of chicken body temperature can effectively improve the success rate of caged chicken breeding, by monitoring the number of open-mouthed chickens as a percentage of the total number of chickens and can directly determine whether the chicken body temperature is appropriate. There is no relevant solution to this requirement at present, so this paper proposes a joint feature target detection algorithm based on YOLOv5 to detect the opening and closing state of the chicken mouth. The algorithm improves the YOLOv5 network in the following ways: 1. The improved ResC module is used to reconstruct the backbone network of YOLOv5, which diversifies feature scales and enhances the ability of target feature extraction; 2. Integrate the Transformer module with the four-layer feature pyramid to expand the range of feature fusion and improve the accuracy of feature extraction; 3. The joint feature verification(JFV) module is designed to improve the detection accuracy of small targets by adopting the idea of joint verification of small targets and large targets. Finally, the improved network is used to detect the opening and closing state of the chicken beak on the test set, which is derived from the actual cage chicken breeding environment. The results show that the average accuracy (mAP) of the improved RJ-YOLOv5 algorithm is 85.6%, and the detection accuracy is 7.1% higher than the YOLOv5 algorithm; The video detection frame rate reaches 69 FPS, which can meet the requirements of real-time monitoring of chicken farms.
doi_str_mv 10.1109/ACCESS.2023.3275432
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2833275844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10122918</ieee_id><doaj_id>oai_doaj_org_article_a8e8acde4eda4e88b5e05d9cadf53798</doaj_id><sourcerecordid>2833275844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-cfbc081284cd20a876283246631718c5121fc4da5d1dee6d65e0c94f6f8a47683</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxTdGE4nyCfTQxDO4_bvdI6yiGBIO6MFTM7azuAgUu8XEb29xjWEuM5m892byy7Irmg8pzcvbUVXdLxZDljM-5KyQgrOTrMeoKgdccnV6NJ9n_bZd5al0Wsmil02efLONZIIQ9wHJM4QlRnKHEW1s_JaM1ksfmvi-Ib4mY4QPsogQkYyhRUeS4HU-m3_Jy-yshnWL_b9-kb1M7p-rx8Fs_jCtRrOBFXkZB7Z-s-k008I6loMuFNOcCaU4Lai2kjJaW-FAOuoQlVMSc1uKWtUaRKE0v8imXa7zsDK70GwgfBsPjfld-LA0EGJj12hAowbrUKADgVq_pSzpSguulrwoD1k3XdYu-M89ttGs_D5s0_smfXUgqYVIKt6pbPBtG7D-v0pzc-BvOv7mwN_88U-u687VIOKRgzJWUs1_ADYkf3I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833275844</pqid></control><display><type>article</type><title>Joint Feature Target Detection Algorithm of Beak State Based on YOLOv5</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zu, Linan ; Chu, Xiaoyu ; Wang, Qiaomei ; Ju, Yunpeng ; Zhang, Mingyue</creator><creatorcontrib>Zu, Linan ; Chu, Xiaoyu ; Wang, Qiaomei ; Ju, Yunpeng ; Zhang, Mingyue</creatorcontrib><description>Accurate grasp of chicken body temperature can effectively improve the success rate of caged chicken breeding, by monitoring the number of open-mouthed chickens as a percentage of the total number of chickens and can directly determine whether the chicken body temperature is appropriate. There is no relevant solution to this requirement at present, so this paper proposes a joint feature target detection algorithm based on YOLOv5 to detect the opening and closing state of the chicken mouth. The algorithm improves the YOLOv5 network in the following ways: 1. The improved ResC module is used to reconstruct the backbone network of YOLOv5, which diversifies feature scales and enhances the ability of target feature extraction; 2. Integrate the Transformer module with the four-layer feature pyramid to expand the range of feature fusion and improve the accuracy of feature extraction; 3. The joint feature verification(JFV) module is designed to improve the detection accuracy of small targets by adopting the idea of joint verification of small targets and large targets. Finally, the improved network is used to detect the opening and closing state of the chicken beak on the test set, which is derived from the actual cage chicken breeding environment. The results show that the average accuracy (mAP) of the improved RJ-YOLOv5 algorithm is 85.6%, and the detection accuracy is 7.1% higher than the YOLOv5 algorithm; The video detection frame rate reaches 69 FPS, which can meet the requirements of real-time monitoring of chicken farms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3275432</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Animals ; Body temperature ; Caged chicken ; Computer networks ; Computer Vision ; Convolutional neural networks ; Deep Learning ; Feature extraction ; Modules ; Monitoring ; Object detection ; Object recognition ; Poultry ; Satellite broadcasting ; Target detection ; Temperature measurement ; Transformers ; Verification ; YOLO</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-cfbc081284cd20a876283246631718c5121fc4da5d1dee6d65e0c94f6f8a47683</citedby><cites>FETCH-LOGICAL-c409t-cfbc081284cd20a876283246631718c5121fc4da5d1dee6d65e0c94f6f8a47683</cites><orcidid>0009-0001-0154-3432 ; 0000-0002-9769-8833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10122918$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zu, Linan</creatorcontrib><creatorcontrib>Chu, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Qiaomei</creatorcontrib><creatorcontrib>Ju, Yunpeng</creatorcontrib><creatorcontrib>Zhang, Mingyue</creatorcontrib><title>Joint Feature Target Detection Algorithm of Beak State Based on YOLOv5</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate grasp of chicken body temperature can effectively improve the success rate of caged chicken breeding, by monitoring the number of open-mouthed chickens as a percentage of the total number of chickens and can directly determine whether the chicken body temperature is appropriate. There is no relevant solution to this requirement at present, so this paper proposes a joint feature target detection algorithm based on YOLOv5 to detect the opening and closing state of the chicken mouth. The algorithm improves the YOLOv5 network in the following ways: 1. The improved ResC module is used to reconstruct the backbone network of YOLOv5, which diversifies feature scales and enhances the ability of target feature extraction; 2. Integrate the Transformer module with the four-layer feature pyramid to expand the range of feature fusion and improve the accuracy of feature extraction; 3. The joint feature verification(JFV) module is designed to improve the detection accuracy of small targets by adopting the idea of joint verification of small targets and large targets. Finally, the improved network is used to detect the opening and closing state of the chicken beak on the test set, which is derived from the actual cage chicken breeding environment. The results show that the average accuracy (mAP) of the improved RJ-YOLOv5 algorithm is 85.6%, and the detection accuracy is 7.1% higher than the YOLOv5 algorithm; The video detection frame rate reaches 69 FPS, which can meet the requirements of real-time monitoring of chicken farms.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Body temperature</subject><subject>Caged chicken</subject><subject>Computer networks</subject><subject>Computer Vision</subject><subject>Convolutional neural networks</subject><subject>Deep Learning</subject><subject>Feature extraction</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Poultry</subject><subject>Satellite broadcasting</subject><subject>Target detection</subject><subject>Temperature measurement</subject><subject>Transformers</subject><subject>Verification</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9PAjEQxTdGE4nyCfTQxDO4_bvdI6yiGBIO6MFTM7azuAgUu8XEb29xjWEuM5m892byy7Irmg8pzcvbUVXdLxZDljM-5KyQgrOTrMeoKgdccnV6NJ9n_bZd5al0Wsmil02efLONZIIQ9wHJM4QlRnKHEW1s_JaM1ksfmvi-Ib4mY4QPsogQkYyhRUeS4HU-m3_Jy-yshnWL_b9-kb1M7p-rx8Fs_jCtRrOBFXkZB7Z-s-k008I6loMuFNOcCaU4Lai2kjJaW-FAOuoQlVMSc1uKWtUaRKE0v8imXa7zsDK70GwgfBsPjfld-LA0EGJj12hAowbrUKADgVq_pSzpSguulrwoD1k3XdYu-M89ttGs_D5s0_smfXUgqYVIKt6pbPBtG7D-v0pzc-BvOv7mwN_88U-u687VIOKRgzJWUs1_ADYkf3I</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zu, Linan</creator><creator>Chu, Xiaoyu</creator><creator>Wang, Qiaomei</creator><creator>Ju, Yunpeng</creator><creator>Zhang, Mingyue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-0154-3432</orcidid><orcidid>https://orcid.org/0000-0002-9769-8833</orcidid></search><sort><creationdate>20230101</creationdate><title>Joint Feature Target Detection Algorithm of Beak State Based on YOLOv5</title><author>Zu, Linan ; Chu, Xiaoyu ; Wang, Qiaomei ; Ju, Yunpeng ; Zhang, Mingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-cfbc081284cd20a876283246631718c5121fc4da5d1dee6d65e0c94f6f8a47683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Body temperature</topic><topic>Caged chicken</topic><topic>Computer networks</topic><topic>Computer Vision</topic><topic>Convolutional neural networks</topic><topic>Deep Learning</topic><topic>Feature extraction</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Poultry</topic><topic>Satellite broadcasting</topic><topic>Target detection</topic><topic>Temperature measurement</topic><topic>Transformers</topic><topic>Verification</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Linan</creatorcontrib><creatorcontrib>Chu, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Qiaomei</creatorcontrib><creatorcontrib>Ju, Yunpeng</creatorcontrib><creatorcontrib>Zhang, Mingyue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zu, Linan</au><au>Chu, Xiaoyu</au><au>Wang, Qiaomei</au><au>Ju, Yunpeng</au><au>Zhang, Mingyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Feature Target Detection Algorithm of Beak State Based on YOLOv5</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate grasp of chicken body temperature can effectively improve the success rate of caged chicken breeding, by monitoring the number of open-mouthed chickens as a percentage of the total number of chickens and can directly determine whether the chicken body temperature is appropriate. There is no relevant solution to this requirement at present, so this paper proposes a joint feature target detection algorithm based on YOLOv5 to detect the opening and closing state of the chicken mouth. The algorithm improves the YOLOv5 network in the following ways: 1. The improved ResC module is used to reconstruct the backbone network of YOLOv5, which diversifies feature scales and enhances the ability of target feature extraction; 2. Integrate the Transformer module with the four-layer feature pyramid to expand the range of feature fusion and improve the accuracy of feature extraction; 3. The joint feature verification(JFV) module is designed to improve the detection accuracy of small targets by adopting the idea of joint verification of small targets and large targets. Finally, the improved network is used to detect the opening and closing state of the chicken beak on the test set, which is derived from the actual cage chicken breeding environment. The results show that the average accuracy (mAP) of the improved RJ-YOLOv5 algorithm is 85.6%, and the detection accuracy is 7.1% higher than the YOLOv5 algorithm; The video detection frame rate reaches 69 FPS, which can meet the requirements of real-time monitoring of chicken farms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3275432</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-0154-3432</orcidid><orcidid>https://orcid.org/0000-0002-9769-8833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2833275844
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Animals
Body temperature
Caged chicken
Computer networks
Computer Vision
Convolutional neural networks
Deep Learning
Feature extraction
Modules
Monitoring
Object detection
Object recognition
Poultry
Satellite broadcasting
Target detection
Temperature measurement
Transformers
Verification
YOLO
title Joint Feature Target Detection Algorithm of Beak State Based on YOLOv5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Feature%20Target%20Detection%20Algorithm%20of%20Beak%20State%20Based%20on%20YOLOv5&rft.jtitle=IEEE%20access&rft.au=Zu,%20Linan&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3275432&rft_dat=%3Cproquest_ieee_%3E2833275844%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833275844&rft_id=info:pmid/&rft_ieee_id=10122918&rft_doaj_id=oai_doaj_org_article_a8e8acde4eda4e88b5e05d9cadf53798&rfr_iscdi=true