A randomized multi-index sequential Monte Carlo method

We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index seque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2023-10, Vol.33 (5), Article 97
Hauptverfasser: Liang, Xinzhu, Yang, Shangda, Cotter, Simon L., Law, Kody J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Statistics and computing
container_volume 33
creator Liang, Xinzhu
Yang, Shangda
Cotter, Simon L.
Law, Kody J. H.
description We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index sequential Monte Carlo (SMC) ratio estimator, which provably enjoys the complexity improvements of multi-index Monte Carlo (MIMC) and the efficiency of SMC for inference. The present work leverages a randomization strategy to remove bias entirely, which simplifies estimation substantially, particularly in the MIMC context, where the choice of index set is otherwise important. Under reasonable assumptions, the proposed method provably achieves the same canonical complexity of MSE - 1 as the original method (where MSE is mean squared error), but without discretization bias. It is illustrated on examples of Bayesian inverse and spatial statistics problems.
doi_str_mv 10.1007/s11222-023-10249-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2833154880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833154880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a5af6e4ef2acbbb3275f1d74fbcd893356f438c38bbe3d7c82cf46133c30ab893</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9EkkzbpcVn8AsWLnkM-tUvbrEkX1F9v1grePA0Dz_vO8CB0TsklJURcZUoZY5gwwJQw3uL2AC1oLcoKoj5EC9I2BAMV_Bid5LwhhNIG-AI1qyrp0cWh-_KuGnb91OFudP6jyv5958ep0331GMfJV2ud-lgNfnqL7hQdBd1nf_Y7l-jl5vp5fYcfnm7v16sHbIHyCetah8ZzH5i2xhhgog7UCR6MdbIFqJvAQVqQxnhwwkpmA28ogAWiTSGW6GLu3aZY3smT2sRdGstJxSQArbmUpFBspmyKOScf1DZ1g06fihK196NmP6r4UT9-1L4a5lAu8Pjq01_1P6lvXe9n9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833154880</pqid></control><display><type>article</type><title>A randomized multi-index sequential Monte Carlo method</title><source>Springer Online Journals - JUSTICE</source><creator>Liang, Xinzhu ; Yang, Shangda ; Cotter, Simon L. ; Law, Kody J. H.</creator><creatorcontrib>Liang, Xinzhu ; Yang, Shangda ; Cotter, Simon L. ; Law, Kody J. H.</creatorcontrib><description>We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index sequential Monte Carlo (SMC) ratio estimator, which provably enjoys the complexity improvements of multi-index Monte Carlo (MIMC) and the efficiency of SMC for inference. The present work leverages a randomization strategy to remove bias entirely, which simplifies estimation substantially, particularly in the MIMC context, where the choice of index set is otherwise important. Under reasonable assumptions, the proposed method provably achieves the same canonical complexity of MSE - 1 as the original method (where MSE is mean squared error), but without discretization bias. It is illustrated on examples of Bayesian inverse and spatial statistics problems.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-023-10249-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Bias ; Complexity ; Computer Science ; Estimation ; Monte Carlo simulation ; Original Paper ; Probability and Statistics in Computer Science ; Randomization ; Statistical Theory and Methods ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2023-10, Vol.33 (5), Article 97</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a5af6e4ef2acbbb3275f1d74fbcd893356f438c38bbe3d7c82cf46133c30ab893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-023-10249-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-023-10249-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liang, Xinzhu</creatorcontrib><creatorcontrib>Yang, Shangda</creatorcontrib><creatorcontrib>Cotter, Simon L.</creatorcontrib><creatorcontrib>Law, Kody J. H.</creatorcontrib><title>A randomized multi-index sequential Monte Carlo method</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index sequential Monte Carlo (SMC) ratio estimator, which provably enjoys the complexity improvements of multi-index Monte Carlo (MIMC) and the efficiency of SMC for inference. The present work leverages a randomization strategy to remove bias entirely, which simplifies estimation substantially, particularly in the MIMC context, where the choice of index set is otherwise important. Under reasonable assumptions, the proposed method provably achieves the same canonical complexity of MSE - 1 as the original method (where MSE is mean squared error), but without discretization bias. It is illustrated on examples of Bayesian inverse and spatial statistics problems.</description><subject>Artificial Intelligence</subject><subject>Bias</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Estimation</subject><subject>Monte Carlo simulation</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Randomization</subject><subject>Statistical Theory and Methods</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9EkkzbpcVn8AsWLnkM-tUvbrEkX1F9v1grePA0Dz_vO8CB0TsklJURcZUoZY5gwwJQw3uL2AC1oLcoKoj5EC9I2BAMV_Bid5LwhhNIG-AI1qyrp0cWh-_KuGnb91OFudP6jyv5958ep0331GMfJV2ud-lgNfnqL7hQdBd1nf_Y7l-jl5vp5fYcfnm7v16sHbIHyCetah8ZzH5i2xhhgog7UCR6MdbIFqJvAQVqQxnhwwkpmA28ogAWiTSGW6GLu3aZY3smT2sRdGstJxSQArbmUpFBspmyKOScf1DZ1g06fihK196NmP6r4UT9-1L4a5lAu8Pjq01_1P6lvXe9n9Q</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liang, Xinzhu</creator><creator>Yang, Shangda</creator><creator>Cotter, Simon L.</creator><creator>Law, Kody J. H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>A randomized multi-index sequential Monte Carlo method</title><author>Liang, Xinzhu ; Yang, Shangda ; Cotter, Simon L. ; Law, Kody J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a5af6e4ef2acbbb3275f1d74fbcd893356f438c38bbe3d7c82cf46133c30ab893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Bias</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Estimation</topic><topic>Monte Carlo simulation</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Randomization</topic><topic>Statistical Theory and Methods</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xinzhu</creatorcontrib><creatorcontrib>Yang, Shangda</creatorcontrib><creatorcontrib>Cotter, Simon L.</creatorcontrib><creatorcontrib>Law, Kody J. H.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xinzhu</au><au>Yang, Shangda</au><au>Cotter, Simon L.</au><au>Law, Kody J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A randomized multi-index sequential Monte Carlo method</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><artnum>97</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index sequential Monte Carlo (SMC) ratio estimator, which provably enjoys the complexity improvements of multi-index Monte Carlo (MIMC) and the efficiency of SMC for inference. The present work leverages a randomization strategy to remove bias entirely, which simplifies estimation substantially, particularly in the MIMC context, where the choice of index set is otherwise important. Under reasonable assumptions, the proposed method provably achieves the same canonical complexity of MSE - 1 as the original method (where MSE is mean squared error), but without discretization bias. It is illustrated on examples of Bayesian inverse and spatial statistics problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-023-10249-9</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2023-10, Vol.33 (5), Article 97
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2833154880
source Springer Online Journals - JUSTICE
subjects Artificial Intelligence
Bias
Complexity
Computer Science
Estimation
Monte Carlo simulation
Original Paper
Probability and Statistics in Computer Science
Randomization
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
title A randomized multi-index sequential Monte Carlo method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20randomized%20multi-index%20sequential%20Monte%20Carlo%20method&rft.jtitle=Statistics%20and%20computing&rft.au=Liang,%20Xinzhu&rft.date=2023-10-01&rft.volume=33&rft.issue=5&rft.artnum=97&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-023-10249-9&rft_dat=%3Cproquest_cross%3E2833154880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833154880&rft_id=info:pmid/&rfr_iscdi=true