Concentrating Dirac Operators and Generalized Seiberg-Witten Equations
This article studies a class of Dirac operators of the form \(D_\varepsilon= D+\varepsilon^{-1}\mathcal A\), where \(\mathcal A\) is a zeroth order perturbation vanishing on a subbundle. When \(\mathcal A\) satisfies certain additional assumptions, solutions of the Dirac equation have a concentratio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Parker, Gregory J |
description | This article studies a class of Dirac operators of the form \(D_\varepsilon= D+\varepsilon^{-1}\mathcal A\), where \(\mathcal A\) is a zeroth order perturbation vanishing on a subbundle. When \(\mathcal A\) satisfies certain additional assumptions, solutions of the Dirac equation have a concentration property in the limit \(\varepsilon\to 0\): components of the solution orthogonal to \(\ker(\mathcal A)\) decay exponentially away from the locus \(\mathcal Z\) where the rank of \(\ker(\mathcal A)\) jumps up. These results are extended to a class of non-linear Dirac equations. This framework is then applied to study the compactness properties of moduli spaces of solutions to generalized Seiberg-Witten equations. In particular, it is shown that for sequences of solutions which converge weakly to a \(\mathbb Z_2\)-harmonic spinor, certain components of the solutions concentrate exponentially around the singular set of the \(\mathbb Z_2\)-harmonic spinor. Using these results, the weak convergence to \(\mathbb Z_2\)-harmonic spinors proved in existing convergence theorems is improved to \(C^\infty_{loc}\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2832896397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832896397</sourcerecordid><originalsourceid>FETCH-proquest_journals_28328963973</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMgWLTvEHAu1Jv-zrXVzUHBscT2WlLKTZuki09vBh_A6XA437dhAQhxiooEYMdCa8c4jiHLIU1FwJpKU4fkjHSKBn5WRnb8NqN3bSyX1PMLktdJfbDnd1QvNEP0VM4h8XpZ_U-TPbDtW04Wwx_37NjUj-oazUYvK1rXjno15FMLhYCizESZi_9WX-JDO60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832896397</pqid></control><display><type>article</type><title>Concentrating Dirac Operators and Generalized Seiberg-Witten Equations</title><source>Free E- Journals</source><creator>Parker, Gregory J</creator><creatorcontrib>Parker, Gregory J</creatorcontrib><description>This article studies a class of Dirac operators of the form \(D_\varepsilon= D+\varepsilon^{-1}\mathcal A\), where \(\mathcal A\) is a zeroth order perturbation vanishing on a subbundle. When \(\mathcal A\) satisfies certain additional assumptions, solutions of the Dirac equation have a concentration property in the limit \(\varepsilon\to 0\): components of the solution orthogonal to \(\ker(\mathcal A)\) decay exponentially away from the locus \(\mathcal Z\) where the rank of \(\ker(\mathcal A)\) jumps up. These results are extended to a class of non-linear Dirac equations. This framework is then applied to study the compactness properties of moduli spaces of solutions to generalized Seiberg-Witten equations. In particular, it is shown that for sequences of solutions which converge weakly to a \(\mathbb Z_2\)-harmonic spinor, certain components of the solutions concentrate exponentially around the singular set of the \(\mathbb Z_2\)-harmonic spinor. Using these results, the weak convergence to \(\mathbb Z_2\)-harmonic spinors proved in existing convergence theorems is improved to \(C^\infty_{loc}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Dirac equation ; Mathematical analysis ; Operators ; Perturbation</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Parker, Gregory J</creatorcontrib><title>Concentrating Dirac Operators and Generalized Seiberg-Witten Equations</title><title>arXiv.org</title><description>This article studies a class of Dirac operators of the form \(D_\varepsilon= D+\varepsilon^{-1}\mathcal A\), where \(\mathcal A\) is a zeroth order perturbation vanishing on a subbundle. When \(\mathcal A\) satisfies certain additional assumptions, solutions of the Dirac equation have a concentration property in the limit \(\varepsilon\to 0\): components of the solution orthogonal to \(\ker(\mathcal A)\) decay exponentially away from the locus \(\mathcal Z\) where the rank of \(\ker(\mathcal A)\) jumps up. These results are extended to a class of non-linear Dirac equations. This framework is then applied to study the compactness properties of moduli spaces of solutions to generalized Seiberg-Witten equations. In particular, it is shown that for sequences of solutions which converge weakly to a \(\mathbb Z_2\)-harmonic spinor, certain components of the solutions concentrate exponentially around the singular set of the \(\mathbb Z_2\)-harmonic spinor. Using these results, the weak convergence to \(\mathbb Z_2\)-harmonic spinors proved in existing convergence theorems is improved to \(C^\infty_{loc}\).</description><subject>Convergence</subject><subject>Dirac equation</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Perturbation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAURoMgWLTvEHAu1Jv-zrXVzUHBscT2WlLKTZuki09vBh_A6XA437dhAQhxiooEYMdCa8c4jiHLIU1FwJpKU4fkjHSKBn5WRnb8NqN3bSyX1PMLktdJfbDnd1QvNEP0VM4h8XpZ_U-TPbDtW04Wwx_37NjUj-oazUYvK1rXjno15FMLhYCizESZi_9WX-JDO60</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Parker, Gregory J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230703</creationdate><title>Concentrating Dirac Operators and Generalized Seiberg-Witten Equations</title><author>Parker, Gregory J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28328963973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convergence</topic><topic>Dirac equation</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Perturbation</topic><toplevel>online_resources</toplevel><creatorcontrib>Parker, Gregory J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, Gregory J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Concentrating Dirac Operators and Generalized Seiberg-Witten Equations</atitle><jtitle>arXiv.org</jtitle><date>2023-07-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This article studies a class of Dirac operators of the form \(D_\varepsilon= D+\varepsilon^{-1}\mathcal A\), where \(\mathcal A\) is a zeroth order perturbation vanishing on a subbundle. When \(\mathcal A\) satisfies certain additional assumptions, solutions of the Dirac equation have a concentration property in the limit \(\varepsilon\to 0\): components of the solution orthogonal to \(\ker(\mathcal A)\) decay exponentially away from the locus \(\mathcal Z\) where the rank of \(\ker(\mathcal A)\) jumps up. These results are extended to a class of non-linear Dirac equations. This framework is then applied to study the compactness properties of moduli spaces of solutions to generalized Seiberg-Witten equations. In particular, it is shown that for sequences of solutions which converge weakly to a \(\mathbb Z_2\)-harmonic spinor, certain components of the solutions concentrate exponentially around the singular set of the \(\mathbb Z_2\)-harmonic spinor. Using these results, the weak convergence to \(\mathbb Z_2\)-harmonic spinors proved in existing convergence theorems is improved to \(C^\infty_{loc}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2832896397 |
source | Free E- Journals |
subjects | Convergence Dirac equation Mathematical analysis Operators Perturbation |
title | Concentrating Dirac Operators and Generalized Seiberg-Witten Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Concentrating%20Dirac%20Operators%20and%20Generalized%20Seiberg-Witten%20Equations&rft.jtitle=arXiv.org&rft.au=Parker,%20Gregory%20J&rft.date=2023-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2832896397%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832896397&rft_id=info:pmid/&rfr_iscdi=true |