Minimal-time nonlinear control via semi-infinite programming
We address the problem of computing a control for a time-dependent nonlinear system to reach a target set in a minimal time. To solve this minimal time control problem, we introduce a hierarchy of linear semi-infinite programs, the values of which converge to the value of the control problem. These...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Oustry, Antoine Tacchi, Matteo |
description | We address the problem of computing a control for a time-dependent nonlinear system to reach a target set in a minimal time. To solve this minimal time control problem, we introduce a hierarchy of linear semi-infinite programs, the values of which converge to the value of the control problem. These semi-infinite programs are increasing restrictions of the dual of the nonlinear control problem, which is a maximization problem over the subsolutions of the Hamilton-Jacobi-Bellman (HJB) equation. Our approach is compatible with generic dynamical systems and state constraints. Specifically, we use an oracle that, for a given differentiable function, returns a point at which the function violates the HJB inequality. We solve the semi-infinite programs using a classical convex optimization algorithm with a convergence rate of O(1/k), where k is the number of calls to the oracle. This algorithm yields subsolutions of the HJB equation that approximate the value function and provide a lower bound on the optimal time. We study the closed-loop control built on the obtained approximate value functions, and we give theoretical guarantees on its performance depending on the approximation error for the value function. We show promising numerical results for three non-polynomial systems with up to 6 state variables and 5 control variables. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2832892036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832892036</sourcerecordid><originalsourceid>FETCH-proquest_journals_28328920363</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScA_FiawQ3UVzc3EuQa7mSXDRJfX47-ABO__B_C1GBMTtl9wArUec8aq2hPUDTmEqc7sQUnFeFAkqO7InRJfmMXFL08kNOZgykiPtZFpSvFIfkQiAeNmLZO5-x_nUtttfL43xTs3lPmEs3xinxvDqwBuwRtGnNf-oLhDM4NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832892036</pqid></control><display><type>article</type><title>Minimal-time nonlinear control via semi-infinite programming</title><source>Free E- Journals</source><creator>Oustry, Antoine ; Tacchi, Matteo</creator><creatorcontrib>Oustry, Antoine ; Tacchi, Matteo</creatorcontrib><description>We address the problem of computing a control for a time-dependent nonlinear system to reach a target set in a minimal time. To solve this minimal time control problem, we introduce a hierarchy of linear semi-infinite programs, the values of which converge to the value of the control problem. These semi-infinite programs are increasing restrictions of the dual of the nonlinear control problem, which is a maximization problem over the subsolutions of the Hamilton-Jacobi-Bellman (HJB) equation. Our approach is compatible with generic dynamical systems and state constraints. Specifically, we use an oracle that, for a given differentiable function, returns a point at which the function violates the HJB inequality. We solve the semi-infinite programs using a classical convex optimization algorithm with a convergence rate of O(1/k), where k is the number of calls to the oracle. This algorithm yields subsolutions of the HJB equation that approximate the value function and provide a lower bound on the optimal time. We study the closed-loop control built on the obtained approximate value functions, and we give theoretical guarantees on its performance depending on the approximation error for the value function. We show promising numerical results for three non-polynomial systems with up to 6 state variables and 5 control variables.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Closed loops ; Computational geometry ; Convergence ; Convexity ; Dynamical systems ; Feedback control ; Lower bounds ; Nonlinear control ; Nonlinear systems ; Optimization ; Polynomials ; Time dependence</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Oustry, Antoine</creatorcontrib><creatorcontrib>Tacchi, Matteo</creatorcontrib><title>Minimal-time nonlinear control via semi-infinite programming</title><title>arXiv.org</title><description>We address the problem of computing a control for a time-dependent nonlinear system to reach a target set in a minimal time. To solve this minimal time control problem, we introduce a hierarchy of linear semi-infinite programs, the values of which converge to the value of the control problem. These semi-infinite programs are increasing restrictions of the dual of the nonlinear control problem, which is a maximization problem over the subsolutions of the Hamilton-Jacobi-Bellman (HJB) equation. Our approach is compatible with generic dynamical systems and state constraints. Specifically, we use an oracle that, for a given differentiable function, returns a point at which the function violates the HJB inequality. We solve the semi-infinite programs using a classical convex optimization algorithm with a convergence rate of O(1/k), where k is the number of calls to the oracle. This algorithm yields subsolutions of the HJB equation that approximate the value function and provide a lower bound on the optimal time. We study the closed-loop control built on the obtained approximate value functions, and we give theoretical guarantees on its performance depending on the approximation error for the value function. We show promising numerical results for three non-polynomial systems with up to 6 state variables and 5 control variables.</description><subject>Algorithms</subject><subject>Closed loops</subject><subject>Computational geometry</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Dynamical systems</subject><subject>Feedback control</subject><subject>Lower bounds</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScA_FiawQ3UVzc3EuQa7mSXDRJfX47-ABO__B_C1GBMTtl9wArUec8aq2hPUDTmEqc7sQUnFeFAkqO7InRJfmMXFL08kNOZgykiPtZFpSvFIfkQiAeNmLZO5-x_nUtttfL43xTs3lPmEs3xinxvDqwBuwRtGnNf-oLhDM4NQ</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Oustry, Antoine</creator><creator>Tacchi, Matteo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230703</creationdate><title>Minimal-time nonlinear control via semi-infinite programming</title><author>Oustry, Antoine ; Tacchi, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28328920363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Closed loops</topic><topic>Computational geometry</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Dynamical systems</topic><topic>Feedback control</topic><topic>Lower bounds</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Oustry, Antoine</creatorcontrib><creatorcontrib>Tacchi, Matteo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oustry, Antoine</au><au>Tacchi, Matteo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Minimal-time nonlinear control via semi-infinite programming</atitle><jtitle>arXiv.org</jtitle><date>2023-07-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We address the problem of computing a control for a time-dependent nonlinear system to reach a target set in a minimal time. To solve this minimal time control problem, we introduce a hierarchy of linear semi-infinite programs, the values of which converge to the value of the control problem. These semi-infinite programs are increasing restrictions of the dual of the nonlinear control problem, which is a maximization problem over the subsolutions of the Hamilton-Jacobi-Bellman (HJB) equation. Our approach is compatible with generic dynamical systems and state constraints. Specifically, we use an oracle that, for a given differentiable function, returns a point at which the function violates the HJB inequality. We solve the semi-infinite programs using a classical convex optimization algorithm with a convergence rate of O(1/k), where k is the number of calls to the oracle. This algorithm yields subsolutions of the HJB equation that approximate the value function and provide a lower bound on the optimal time. We study the closed-loop control built on the obtained approximate value functions, and we give theoretical guarantees on its performance depending on the approximation error for the value function. We show promising numerical results for three non-polynomial systems with up to 6 state variables and 5 control variables.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2832892036 |
source | Free E- Journals |
subjects | Algorithms Closed loops Computational geometry Convergence Convexity Dynamical systems Feedback control Lower bounds Nonlinear control Nonlinear systems Optimization Polynomials Time dependence |
title | Minimal-time nonlinear control via semi-infinite programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Minimal-time%20nonlinear%20control%20via%20semi-infinite%20programming&rft.jtitle=arXiv.org&rft.au=Oustry,%20Antoine&rft.date=2023-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2832892036%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832892036&rft_id=info:pmid/&rfr_iscdi=true |