Statistically Optimal Beamforming and Ergodic Capacity for RIS-aided MISO Systems

This paper focuses on optimal beamforming to maximize the mean signal-to-noise ratio (SNR) for a reconfigurable intelligent surface (RIS)-aided MISO downlink system under correlated Rician fading. The beamforming problem becomes non-convex because of the unit modulus constraint of passive RIS elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Kota, Kali Krishna, Manasa, M S S, Mankar, Praful D, Dhillon, Harpreet S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kota, Kali Krishna
Manasa, M S S
Mankar, Praful D
Dhillon, Harpreet S
description This paper focuses on optimal beamforming to maximize the mean signal-to-noise ratio (SNR) for a reconfigurable intelligent surface (RIS)-aided MISO downlink system under correlated Rician fading. The beamforming problem becomes non-convex because of the unit modulus constraint of passive RIS elements. To tackle this, we propose a semidefinite relaxation-based iterative algorithm for obtaining statistically optimal transmit beamforming vector and RIS-phase shift matrix. Further, we analyze the outage probability (OP) and ergodic capacity (EC) to measure the performance of the proposed beamforming scheme. Just like the existing works, the OP and EC evaluations rely on the numerical computation of the iterative algorithm, which does not clearly reveal the functional dependence of system performance on key parameters. Therefore, we derive closed-form expressions for the optimal beamforming vector and phase shift matrix along with their OP performance for special cases of the general setup. Our analysis reveals that the i.i.d. fading is more beneficial than the correlated case in the presence of LoS components. This fact is analytically established for the setting in which the LoS is blocked. Furthermore, we demonstrate that the maximum mean SNR improves linearly/quadratically with the number of RIS elements in the absence/presence of LoS component under i.i.d. fading.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2832889974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832889974</sourcerecordid><originalsourceid>FETCH-proquest_journals_28328899743</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oLNimOa-JkYeQsrt86JTJprbNg_--Dv2ATu_heTfEo4ydAh5RuiO-tUMYhvSc0DhmHnlUDp20Tjao1Arl7KRGBReBupuMlmMPOLaQm35qZQMZzthIt8IX4VlUAcpWtHAvqhKq1Tqh7YFsO1RW-L_uyfGav7JbMJvpvQjr6mFazPilmnJGOU_TJGL_XR9qvT68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832889974</pqid></control><display><type>article</type><title>Statistically Optimal Beamforming and Ergodic Capacity for RIS-aided MISO Systems</title><source>Free E- Journals</source><creator>Kota, Kali Krishna ; Manasa, M S S ; Mankar, Praful D ; Dhillon, Harpreet S</creator><creatorcontrib>Kota, Kali Krishna ; Manasa, M S S ; Mankar, Praful D ; Dhillon, Harpreet S</creatorcontrib><description>This paper focuses on optimal beamforming to maximize the mean signal-to-noise ratio (SNR) for a reconfigurable intelligent surface (RIS)-aided MISO downlink system under correlated Rician fading. The beamforming problem becomes non-convex because of the unit modulus constraint of passive RIS elements. To tackle this, we propose a semidefinite relaxation-based iterative algorithm for obtaining statistically optimal transmit beamforming vector and RIS-phase shift matrix. Further, we analyze the outage probability (OP) and ergodic capacity (EC) to measure the performance of the proposed beamforming scheme. Just like the existing works, the OP and EC evaluations rely on the numerical computation of the iterative algorithm, which does not clearly reveal the functional dependence of system performance on key parameters. Therefore, we derive closed-form expressions for the optimal beamforming vector and phase shift matrix along with their OP performance for special cases of the general setup. Our analysis reveals that the i.i.d. fading is more beneficial than the correlated case in the presence of LoS components. This fact is analytically established for the setting in which the LoS is blocked. Furthermore, we demonstrate that the maximum mean SNR improves linearly/quadratically with the number of RIS elements in the absence/presence of LoS component under i.i.d. fading.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beamforming ; Ergodic processes ; Fading ; Iterative algorithms ; Iterative methods ; Matrices (mathematics) ; Numerical analysis ; Performance evaluation ; Phase shift ; Signal to noise ratio</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kota, Kali Krishna</creatorcontrib><creatorcontrib>Manasa, M S S</creatorcontrib><creatorcontrib>Mankar, Praful D</creatorcontrib><creatorcontrib>Dhillon, Harpreet S</creatorcontrib><title>Statistically Optimal Beamforming and Ergodic Capacity for RIS-aided MISO Systems</title><title>arXiv.org</title><description>This paper focuses on optimal beamforming to maximize the mean signal-to-noise ratio (SNR) for a reconfigurable intelligent surface (RIS)-aided MISO downlink system under correlated Rician fading. The beamforming problem becomes non-convex because of the unit modulus constraint of passive RIS elements. To tackle this, we propose a semidefinite relaxation-based iterative algorithm for obtaining statistically optimal transmit beamforming vector and RIS-phase shift matrix. Further, we analyze the outage probability (OP) and ergodic capacity (EC) to measure the performance of the proposed beamforming scheme. Just like the existing works, the OP and EC evaluations rely on the numerical computation of the iterative algorithm, which does not clearly reveal the functional dependence of system performance on key parameters. Therefore, we derive closed-form expressions for the optimal beamforming vector and phase shift matrix along with their OP performance for special cases of the general setup. Our analysis reveals that the i.i.d. fading is more beneficial than the correlated case in the presence of LoS components. This fact is analytically established for the setting in which the LoS is blocked. Furthermore, we demonstrate that the maximum mean SNR improves linearly/quadratically with the number of RIS elements in the absence/presence of LoS component under i.i.d. fading.</description><subject>Beamforming</subject><subject>Ergodic processes</subject><subject>Fading</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Matrices (mathematics)</subject><subject>Numerical analysis</subject><subject>Performance evaluation</subject><subject>Phase shift</subject><subject>Signal to noise ratio</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oLNimOa-JkYeQsrt86JTJprbNg_--Dv2ATu_heTfEo4ydAh5RuiO-tUMYhvSc0DhmHnlUDp20Tjao1Arl7KRGBReBupuMlmMPOLaQm35qZQMZzthIt8IX4VlUAcpWtHAvqhKq1Tqh7YFsO1RW-L_uyfGav7JbMJvpvQjr6mFazPilmnJGOU_TJGL_XR9qvT68</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Kota, Kali Krishna</creator><creator>Manasa, M S S</creator><creator>Mankar, Praful D</creator><creator>Dhillon, Harpreet S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230701</creationdate><title>Statistically Optimal Beamforming and Ergodic Capacity for RIS-aided MISO Systems</title><author>Kota, Kali Krishna ; Manasa, M S S ; Mankar, Praful D ; Dhillon, Harpreet S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28328899743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Beamforming</topic><topic>Ergodic processes</topic><topic>Fading</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Matrices (mathematics)</topic><topic>Numerical analysis</topic><topic>Performance evaluation</topic><topic>Phase shift</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Kota, Kali Krishna</creatorcontrib><creatorcontrib>Manasa, M S S</creatorcontrib><creatorcontrib>Mankar, Praful D</creatorcontrib><creatorcontrib>Dhillon, Harpreet S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kota, Kali Krishna</au><au>Manasa, M S S</au><au>Mankar, Praful D</au><au>Dhillon, Harpreet S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Statistically Optimal Beamforming and Ergodic Capacity for RIS-aided MISO Systems</atitle><jtitle>arXiv.org</jtitle><date>2023-07-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper focuses on optimal beamforming to maximize the mean signal-to-noise ratio (SNR) for a reconfigurable intelligent surface (RIS)-aided MISO downlink system under correlated Rician fading. The beamforming problem becomes non-convex because of the unit modulus constraint of passive RIS elements. To tackle this, we propose a semidefinite relaxation-based iterative algorithm for obtaining statistically optimal transmit beamforming vector and RIS-phase shift matrix. Further, we analyze the outage probability (OP) and ergodic capacity (EC) to measure the performance of the proposed beamforming scheme. Just like the existing works, the OP and EC evaluations rely on the numerical computation of the iterative algorithm, which does not clearly reveal the functional dependence of system performance on key parameters. Therefore, we derive closed-form expressions for the optimal beamforming vector and phase shift matrix along with their OP performance for special cases of the general setup. Our analysis reveals that the i.i.d. fading is more beneficial than the correlated case in the presence of LoS components. This fact is analytically established for the setting in which the LoS is blocked. Furthermore, we demonstrate that the maximum mean SNR improves linearly/quadratically with the number of RIS elements in the absence/presence of LoS component under i.i.d. fading.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2832889974
source Free E- Journals
subjects Beamforming
Ergodic processes
Fading
Iterative algorithms
Iterative methods
Matrices (mathematics)
Numerical analysis
Performance evaluation
Phase shift
Signal to noise ratio
title Statistically Optimal Beamforming and Ergodic Capacity for RIS-aided MISO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Statistically%20Optimal%20Beamforming%20and%20Ergodic%20Capacity%20for%20RIS-aided%20MISO%20Systems&rft.jtitle=arXiv.org&rft.au=Kota,%20Kali%20Krishna&rft.date=2023-07-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2832889974%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832889974&rft_id=info:pmid/&rfr_iscdi=true