An Effective Combination of Convolutional Neural Network and Support Vector Machine Classifier for Arabic Handwritten Recognition

Recognition of handwritten Arabic characters remains a major challenge for researchers, given the significant differences in handwriting. This paper presents a hybrid method based on combining the most efficient classification techniques. A trained convolutional neural network (CNN) was applied to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2023-06, Vol.57 (3), p.267-275
1. Verfasser: Mamouni El Mamoun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 3
container_start_page 267
container_title Automatic control and computer sciences
container_volume 57
creator Mamouni El Mamoun
description Recognition of handwritten Arabic characters remains a major challenge for researchers, given the significant differences in handwriting. This paper presents a hybrid method based on combining the most efficient classification techniques. A trained convolutional neural network (CNN) was applied to extract features from character images. Then, a support vector machine (SVM) was used for classification. By combining CNN and SVM, the aim is to exploit both technologies’ strengths. Four hybrid models are proposed in this work. Several databases such as HACDB, HIJJA, AHCD, and MNIST were used to evaluate them. The results obtained are satisfactory compared to similar studies in the literature, with a test accuracy of 89.7, 88.8, 97.3, and 99.4%, respectively.
doi_str_mv 10.3103/S0146411623030069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832825821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832825821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e15a39408e7d310391feae1a134eba4a253c3bef3589421a1805da73ea73b7f53</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82qy2Wyzx1LUClXBqnhbsttJTd0ma5Jt8eg_N2sFD-IhDDPvfW-YIHRKyTmjhF3MCc3yjNI8ZYQRkhd7aEA5Fwkl4mUfDXo56fVDdOT9ipCoiXyAPscGXyoFddAbwBO7rrSRQVuDrYqt2dim61vZ4Dvo3HcJW-vesDQLPO_a1rqAnyNvHb6V9as2MaaR3mulwWEVx2MnK13jaSS2TocABj9AbZdG98nH6EDJxsPJTx2ip6vLx8k0md1f30zGs6RmNA8JUC5ZkREBo0V_cUEVSKCSsgwqmcmUs5pVoBgXRZbGuSB8IUcM4qtGirMhOtvlts6-d-BDubKdi4f5MhUsFSkXKY0uunPVznrvQJWt02vpPkpKyn5v-eenI5PuGB-9ZgnuN_l_6AshI4E9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832825821</pqid></control><display><type>article</type><title>An Effective Combination of Convolutional Neural Network and Support Vector Machine Classifier for Arabic Handwritten Recognition</title><source>Springer Nature - Complete Springer Journals</source><creator>Mamouni El Mamoun</creator><creatorcontrib>Mamouni El Mamoun</creatorcontrib><description>Recognition of handwritten Arabic characters remains a major challenge for researchers, given the significant differences in handwriting. This paper presents a hybrid method based on combining the most efficient classification techniques. A trained convolutional neural network (CNN) was applied to extract features from character images. Then, a support vector machine (SVM) was used for classification. By combining CNN and SVM, the aim is to exploit both technologies’ strengths. Four hybrid models are proposed in this work. Several databases such as HACDB, HIJJA, AHCD, and MNIST were used to evaluate them. The results obtained are satisfactory compared to similar studies in the literature, with a test accuracy of 89.7, 88.8, 97.3, and 99.4%, respectively.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411623030069</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Character recognition ; Classification ; Computer Science ; Control Structures and Microprogramming ; Handwriting recognition ; Support vector machines</subject><ispartof>Automatic control and computer sciences, 2023-06, Vol.57 (3), p.267-275</ispartof><rights>Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 3, pp. 267–275. © Allerton Press, Inc., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e15a39408e7d310391feae1a134eba4a253c3bef3589421a1805da73ea73b7f53</citedby><cites>FETCH-LOGICAL-c316t-e15a39408e7d310391feae1a134eba4a253c3bef3589421a1805da73ea73b7f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411623030069$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411623030069$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mamouni El Mamoun</creatorcontrib><title>An Effective Combination of Convolutional Neural Network and Support Vector Machine Classifier for Arabic Handwritten Recognition</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>Recognition of handwritten Arabic characters remains a major challenge for researchers, given the significant differences in handwriting. This paper presents a hybrid method based on combining the most efficient classification techniques. A trained convolutional neural network (CNN) was applied to extract features from character images. Then, a support vector machine (SVM) was used for classification. By combining CNN and SVM, the aim is to exploit both technologies’ strengths. Four hybrid models are proposed in this work. Several databases such as HACDB, HIJJA, AHCD, and MNIST were used to evaluate them. The results obtained are satisfactory compared to similar studies in the literature, with a test accuracy of 89.7, 88.8, 97.3, and 99.4%, respectively.</description><subject>Artificial neural networks</subject><subject>Character recognition</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Handwriting recognition</subject><subject>Support vector machines</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82qy2Wyzx1LUClXBqnhbsttJTd0ma5Jt8eg_N2sFD-IhDDPvfW-YIHRKyTmjhF3MCc3yjNI8ZYQRkhd7aEA5Fwkl4mUfDXo56fVDdOT9ipCoiXyAPscGXyoFddAbwBO7rrSRQVuDrYqt2dim61vZ4Dvo3HcJW-vesDQLPO_a1rqAnyNvHb6V9as2MaaR3mulwWEVx2MnK13jaSS2TocABj9AbZdG98nH6EDJxsPJTx2ip6vLx8k0md1f30zGs6RmNA8JUC5ZkREBo0V_cUEVSKCSsgwqmcmUs5pVoBgXRZbGuSB8IUcM4qtGirMhOtvlts6-d-BDubKdi4f5MhUsFSkXKY0uunPVznrvQJWt02vpPkpKyn5v-eenI5PuGB-9ZgnuN_l_6AshI4E9</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mamouni El Mamoun</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>An Effective Combination of Convolutional Neural Network and Support Vector Machine Classifier for Arabic Handwritten Recognition</title><author>Mamouni El Mamoun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e15a39408e7d310391feae1a134eba4a253c3bef3589421a1805da73ea73b7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Character recognition</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Handwriting recognition</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamouni El Mamoun</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamouni El Mamoun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Effective Combination of Convolutional Neural Network and Support Vector Machine Classifier for Arabic Handwritten Recognition</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>57</volume><issue>3</issue><spage>267</spage><epage>275</epage><pages>267-275</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>Recognition of handwritten Arabic characters remains a major challenge for researchers, given the significant differences in handwriting. This paper presents a hybrid method based on combining the most efficient classification techniques. A trained convolutional neural network (CNN) was applied to extract features from character images. Then, a support vector machine (SVM) was used for classification. By combining CNN and SVM, the aim is to exploit both technologies’ strengths. Four hybrid models are proposed in this work. Several databases such as HACDB, HIJJA, AHCD, and MNIST were used to evaluate them. The results obtained are satisfactory compared to similar studies in the literature, with a test accuracy of 89.7, 88.8, 97.3, and 99.4%, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411623030069</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2023-06, Vol.57 (3), p.267-275
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2832825821
source Springer Nature - Complete Springer Journals
subjects Artificial neural networks
Character recognition
Classification
Computer Science
Control Structures and Microprogramming
Handwriting recognition
Support vector machines
title An Effective Combination of Convolutional Neural Network and Support Vector Machine Classifier for Arabic Handwritten Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Effective%20Combination%20of%20Convolutional%20Neural%20Network%20and%20Support%20Vector%20Machine%20Classifier%20for%20Arabic%20Handwritten%20Recognition&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Mamouni%20El%20Mamoun&rft.date=2023-06-01&rft.volume=57&rft.issue=3&rft.spage=267&rft.epage=275&rft.pages=267-275&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411623030069&rft_dat=%3Cproquest_cross%3E2832825821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832825821&rft_id=info:pmid/&rfr_iscdi=true