Oldroyd-B Model with High Weissenberg Number and Fractional Velocity Dissipation

This paper focuses on a high Weissenberg number Oldroyd-B model of complex fluids with fractional frequency velocity dissipation. Mathematically the fluid velocity u satisfies the Navier–Stokes equations with fractional dissipation ( - Δ ) α u while the equation of the non-Newtonian tensor τ involve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2023-09, Vol.33 (9), Article 296
Hauptverfasser: Zhao, Jiefeng, Wu, Jiahong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on a high Weissenberg number Oldroyd-B model of complex fluids with fractional frequency velocity dissipation. Mathematically the fluid velocity u satisfies the Navier–Stokes equations with fractional dissipation ( - Δ ) α u while the equation of the non-Newtonian tensor τ involves no diffusion or damping mechanism. The aim here is to solve the small-data global well-posedness and stability problem with the least amount of dissipation and minimal regularity requirement. We are able to establish the desired well-posedness and stability result in a hybrid homogeneous Besov setting for any fractional power in the range 1 / 2 ≤ α ≤ 1 . To deal with the difficulties due to the weak velocity dissipation and the lack of diffusion or damping in the τ -equation, we exploit the coupling and interaction of this Oldroyd-B model to reveal the hidden wave structure and make extensive use of the associated smoothing and stabilizing effect.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-023-01361-3