Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional
Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which tak...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kuntz, Rebecca Maria Herzog, Maximilian Philipp Heinrich von Campe Röver, Lennart Schäfer, Björn Malte |
description | Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which takes on the shape of a path integral. After showing the validity of the Cramér-Rao bound and unbiasedness for functional inference in the Gaussian case, we construct Fisher-functionals for the dark energy equation of state constrained by the cosmological redshift-luminosity relationship of supernovae of type Ia, for both the linearised and the lowest-order non-linear model. Introducing Fourier-expansions and expansions into Gegenbauer-polynomials as discretisations of the dark energy equation of state function shows how the uncertainty on the inferred function scales with model complexity and how functional assumptions can lead to errors in extrapolation to poorly constrained redshift ranges. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2832637632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832637632</sourcerecordid><originalsourceid>FETCH-proquest_journals_28326376323</originalsourceid><addsrcrecordid>eNqNjT8LwjAUxIMgWLTf4YFzoSb2D65idXRwL6FNSGrJq3np5oe3FOvsdAf3u7sVi7gQh6Q8cr5hMVGXpinPC55lImLvu_TBBosO9Oia2chh8CgbAwHBoUuuciSy0kFvn6q3BrGlEwxLkUCjh2AUWKeVV65RgPo3RyBdO8eVJaN8sgSy37G1lj2p-Ktbtq8uj_Mtmf5fo6JQdzj6CaSal4LnosgFF_9RH3jdUFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832637632</pqid></control><display><type>article</type><title>Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional</title><source>Free E- Journals</source><creator>Kuntz, Rebecca Maria ; Herzog, Maximilian Philipp ; Heinrich von Campe ; Röver, Lennart ; Schäfer, Björn Malte</creator><creatorcontrib>Kuntz, Rebecca Maria ; Herzog, Maximilian Philipp ; Heinrich von Campe ; Röver, Lennart ; Schäfer, Björn Malte</creatorcontrib><description>Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which takes on the shape of a path integral. After showing the validity of the Cramér-Rao bound and unbiasedness for functional inference in the Gaussian case, we construct Fisher-functionals for the dark energy equation of state constrained by the cosmological redshift-luminosity relationship of supernovae of type Ia, for both the linearised and the lowest-order non-linear model. Introducing Fourier-expansions and expansions into Gegenbauer-polynomials as discretisations of the dark energy equation of state function shows how the uncertainty on the inferred function scales with model complexity and how functional assumptions can lead to errors in extrapolation to poorly constrained redshift ranges.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Constraints ; Cramer-Rao bounds ; Dark energy ; Divergence ; Equations of state ; Functionals ; Luminosity ; Partitions (mathematics) ; Polynomials ; Red shift ; Statistical inference ; Supernovae</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kuntz, Rebecca Maria</creatorcontrib><creatorcontrib>Herzog, Maximilian Philipp</creatorcontrib><creatorcontrib>Heinrich von Campe</creatorcontrib><creatorcontrib>Röver, Lennart</creatorcontrib><creatorcontrib>Schäfer, Björn Malte</creatorcontrib><title>Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional</title><title>arXiv.org</title><description>Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which takes on the shape of a path integral. After showing the validity of the Cramér-Rao bound and unbiasedness for functional inference in the Gaussian case, we construct Fisher-functionals for the dark energy equation of state constrained by the cosmological redshift-luminosity relationship of supernovae of type Ia, for both the linearised and the lowest-order non-linear model. Introducing Fourier-expansions and expansions into Gegenbauer-polynomials as discretisations of the dark energy equation of state function shows how the uncertainty on the inferred function scales with model complexity and how functional assumptions can lead to errors in extrapolation to poorly constrained redshift ranges.</description><subject>Bayesian analysis</subject><subject>Constraints</subject><subject>Cramer-Rao bounds</subject><subject>Dark energy</subject><subject>Divergence</subject><subject>Equations of state</subject><subject>Functionals</subject><subject>Luminosity</subject><subject>Partitions (mathematics)</subject><subject>Polynomials</subject><subject>Red shift</subject><subject>Statistical inference</subject><subject>Supernovae</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjT8LwjAUxIMgWLTf4YFzoSb2D65idXRwL6FNSGrJq3np5oe3FOvsdAf3u7sVi7gQh6Q8cr5hMVGXpinPC55lImLvu_TBBosO9Oia2chh8CgbAwHBoUuuciSy0kFvn6q3BrGlEwxLkUCjh2AUWKeVV65RgPo3RyBdO8eVJaN8sgSy37G1lj2p-Ktbtq8uj_Mtmf5fo6JQdzj6CaSal4LnosgFF_9RH3jdUFE</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Kuntz, Rebecca Maria</creator><creator>Herzog, Maximilian Philipp</creator><creator>Heinrich von Campe</creator><creator>Röver, Lennart</creator><creator>Schäfer, Björn Malte</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240123</creationdate><title>Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional</title><author>Kuntz, Rebecca Maria ; Herzog, Maximilian Philipp ; Heinrich von Campe ; Röver, Lennart ; Schäfer, Björn Malte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28326376323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Constraints</topic><topic>Cramer-Rao bounds</topic><topic>Dark energy</topic><topic>Divergence</topic><topic>Equations of state</topic><topic>Functionals</topic><topic>Luminosity</topic><topic>Partitions (mathematics)</topic><topic>Polynomials</topic><topic>Red shift</topic><topic>Statistical inference</topic><topic>Supernovae</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuntz, Rebecca Maria</creatorcontrib><creatorcontrib>Herzog, Maximilian Philipp</creatorcontrib><creatorcontrib>Heinrich von Campe</creatorcontrib><creatorcontrib>Röver, Lennart</creatorcontrib><creatorcontrib>Schäfer, Björn Malte</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuntz, Rebecca Maria</au><au>Herzog, Maximilian Philipp</au><au>Heinrich von Campe</au><au>Röver, Lennart</au><au>Schäfer, Björn Malte</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional</atitle><jtitle>arXiv.org</jtitle><date>2024-01-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which takes on the shape of a path integral. After showing the validity of the Cramér-Rao bound and unbiasedness for functional inference in the Gaussian case, we construct Fisher-functionals for the dark energy equation of state constrained by the cosmological redshift-luminosity relationship of supernovae of type Ia, for both the linearised and the lowest-order non-linear model. Introducing Fourier-expansions and expansions into Gegenbauer-polynomials as discretisations of the dark energy equation of state function shows how the uncertainty on the inferred function scales with model complexity and how functional assumptions can lead to errors in extrapolation to poorly constrained redshift ranges.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2832637632 |
source | Free E- Journals |
subjects | Bayesian analysis Constraints Cramer-Rao bounds Dark energy Divergence Equations of state Functionals Luminosity Partitions (mathematics) Polynomials Red shift Statistical inference Supernovae |
title | Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Partition%20function%20approach%20to%20non-Gaussian%20likelihoods:%20partitions%20for%20the%20inference%20of%20functions%20and%20the%20Fisher-functional&rft.jtitle=arXiv.org&rft.au=Kuntz,%20Rebecca%20Maria&rft.date=2024-01-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2832637632%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832637632&rft_id=info:pmid/&rfr_iscdi=true |