Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional

Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which tak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Kuntz, Rebecca Maria, Herzog, Maximilian Philipp, Heinrich von Campe, Röver, Lennart, Schäfer, Björn Malte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kuntz, Rebecca Maria
Herzog, Maximilian Philipp
Heinrich von Campe
Röver, Lennart
Schäfer, Björn Malte
description Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which takes on the shape of a path integral. After showing the validity of the Cramér-Rao bound and unbiasedness for functional inference in the Gaussian case, we construct Fisher-functionals for the dark energy equation of state constrained by the cosmological redshift-luminosity relationship of supernovae of type Ia, for both the linearised and the lowest-order non-linear model. Introducing Fourier-expansions and expansions into Gegenbauer-polynomials as discretisations of the dark energy equation of state function shows how the uncertainty on the inferred function scales with model complexity and how functional assumptions can lead to errors in extrapolation to poorly constrained redshift ranges.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2832637632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832637632</sourcerecordid><originalsourceid>FETCH-proquest_journals_28326376323</originalsourceid><addsrcrecordid>eNqNjT8LwjAUxIMgWLTf4YFzoSb2D65idXRwL6FNSGrJq3np5oe3FOvsdAf3u7sVi7gQh6Q8cr5hMVGXpinPC55lImLvu_TBBosO9Oia2chh8CgbAwHBoUuuciSy0kFvn6q3BrGlEwxLkUCjh2AUWKeVV65RgPo3RyBdO8eVJaN8sgSy37G1lj2p-Ktbtq8uj_Mtmf5fo6JQdzj6CaSal4LnosgFF_9RH3jdUFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832637632</pqid></control><display><type>article</type><title>Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional</title><source>Free E- Journals</source><creator>Kuntz, Rebecca Maria ; Herzog, Maximilian Philipp ; Heinrich von Campe ; Röver, Lennart ; Schäfer, Björn Malte</creator><creatorcontrib>Kuntz, Rebecca Maria ; Herzog, Maximilian Philipp ; Heinrich von Campe ; Röver, Lennart ; Schäfer, Björn Malte</creatorcontrib><description>Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which takes on the shape of a path integral. After showing the validity of the Cramér-Rao bound and unbiasedness for functional inference in the Gaussian case, we construct Fisher-functionals for the dark energy equation of state constrained by the cosmological redshift-luminosity relationship of supernovae of type Ia, for both the linearised and the lowest-order non-linear model. Introducing Fourier-expansions and expansions into Gegenbauer-polynomials as discretisations of the dark energy equation of state function shows how the uncertainty on the inferred function scales with model complexity and how functional assumptions can lead to errors in extrapolation to poorly constrained redshift ranges.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Constraints ; Cramer-Rao bounds ; Dark energy ; Divergence ; Equations of state ; Functionals ; Luminosity ; Partitions (mathematics) ; Polynomials ; Red shift ; Statistical inference ; Supernovae</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kuntz, Rebecca Maria</creatorcontrib><creatorcontrib>Herzog, Maximilian Philipp</creatorcontrib><creatorcontrib>Heinrich von Campe</creatorcontrib><creatorcontrib>Röver, Lennart</creatorcontrib><creatorcontrib>Schäfer, Björn Malte</creatorcontrib><title>Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional</title><title>arXiv.org</title><description>Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which takes on the shape of a path integral. After showing the validity of the Cramér-Rao bound and unbiasedness for functional inference in the Gaussian case, we construct Fisher-functionals for the dark energy equation of state constrained by the cosmological redshift-luminosity relationship of supernovae of type Ia, for both the linearised and the lowest-order non-linear model. Introducing Fourier-expansions and expansions into Gegenbauer-polynomials as discretisations of the dark energy equation of state function shows how the uncertainty on the inferred function scales with model complexity and how functional assumptions can lead to errors in extrapolation to poorly constrained redshift ranges.</description><subject>Bayesian analysis</subject><subject>Constraints</subject><subject>Cramer-Rao bounds</subject><subject>Dark energy</subject><subject>Divergence</subject><subject>Equations of state</subject><subject>Functionals</subject><subject>Luminosity</subject><subject>Partitions (mathematics)</subject><subject>Polynomials</subject><subject>Red shift</subject><subject>Statistical inference</subject><subject>Supernovae</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjT8LwjAUxIMgWLTf4YFzoSb2D65idXRwL6FNSGrJq3np5oe3FOvsdAf3u7sVi7gQh6Q8cr5hMVGXpinPC55lImLvu_TBBosO9Oia2chh8CgbAwHBoUuuciSy0kFvn6q3BrGlEwxLkUCjh2AUWKeVV65RgPo3RyBdO8eVJaN8sgSy37G1lj2p-Ktbtq8uj_Mtmf5fo6JQdzj6CaSal4LnosgFF_9RH3jdUFE</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Kuntz, Rebecca Maria</creator><creator>Herzog, Maximilian Philipp</creator><creator>Heinrich von Campe</creator><creator>Röver, Lennart</creator><creator>Schäfer, Björn Malte</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240123</creationdate><title>Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional</title><author>Kuntz, Rebecca Maria ; Herzog, Maximilian Philipp ; Heinrich von Campe ; Röver, Lennart ; Schäfer, Björn Malte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28326376323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Constraints</topic><topic>Cramer-Rao bounds</topic><topic>Dark energy</topic><topic>Divergence</topic><topic>Equations of state</topic><topic>Functionals</topic><topic>Luminosity</topic><topic>Partitions (mathematics)</topic><topic>Polynomials</topic><topic>Red shift</topic><topic>Statistical inference</topic><topic>Supernovae</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuntz, Rebecca Maria</creatorcontrib><creatorcontrib>Herzog, Maximilian Philipp</creatorcontrib><creatorcontrib>Heinrich von Campe</creatorcontrib><creatorcontrib>Röver, Lennart</creatorcontrib><creatorcontrib>Schäfer, Björn Malte</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuntz, Rebecca Maria</au><au>Herzog, Maximilian Philipp</au><au>Heinrich von Campe</au><au>Röver, Lennart</au><au>Schäfer, Björn Malte</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional</atitle><jtitle>arXiv.org</jtitle><date>2024-01-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Motivated by constraints on the dark energy equation of state from supernova-data, we propose a formalism for the Bayesian inference of functions: Starting at a functional variant of the Kullback-Leibler divergence we construct a functional Fisher-matrix and a suitable partition functional which takes on the shape of a path integral. After showing the validity of the Cramér-Rao bound and unbiasedness for functional inference in the Gaussian case, we construct Fisher-functionals for the dark energy equation of state constrained by the cosmological redshift-luminosity relationship of supernovae of type Ia, for both the linearised and the lowest-order non-linear model. Introducing Fourier-expansions and expansions into Gegenbauer-polynomials as discretisations of the dark energy equation of state function shows how the uncertainty on the inferred function scales with model complexity and how functional assumptions can lead to errors in extrapolation to poorly constrained redshift ranges.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2832637632
source Free E- Journals
subjects Bayesian analysis
Constraints
Cramer-Rao bounds
Dark energy
Divergence
Equations of state
Functionals
Luminosity
Partitions (mathematics)
Polynomials
Red shift
Statistical inference
Supernovae
title Partition function approach to non-Gaussian likelihoods: partitions for the inference of functions and the Fisher-functional
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Partition%20function%20approach%20to%20non-Gaussian%20likelihoods:%20partitions%20for%20the%20inference%20of%20functions%20and%20the%20Fisher-functional&rft.jtitle=arXiv.org&rft.au=Kuntz,%20Rebecca%20Maria&rft.date=2024-01-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2832637632%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832637632&rft_id=info:pmid/&rfr_iscdi=true