Forecasting term structure of the Japanese bond yields in the presence of a liquidity trap
The Nelson–Siegel (NS) model is widely used in practice to fit the term structure of interest rates largely due to its high efficacy in the in‐sample fit and out‐of‐sample forecasting of bond yields. In this paper, we compare forecasting performances of estimated yields from the Nelson–Siegel‐based...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2023-08, Vol.42 (5), p.1205-1227 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1227 |
---|---|
container_issue | 5 |
container_start_page | 1205 |
container_title | Journal of forecasting |
container_volume | 42 |
creator | Tsui, Albert K. Wu, Junxiang Zhang, Zhaoyong Zheng, Zhongxi |
description | The Nelson–Siegel (NS) model is widely used in practice to fit the term structure of interest rates largely due to its high efficacy in the in‐sample fit and out‐of‐sample forecasting of bond yields. In this paper, we compare forecasting performances of estimated yields from the Nelson–Siegel‐based models and some simpler time series models, using the daily, weekly, and monthly data during a prolong period of liquidity trap in Japan. We find that the out‐of‐sample expanding window forecasts by NS‐based models in general perform less satisfactory than the competitor models. However, the NS‐based models can be useful in forecasting yields over longer horizons and can work well with GARCH‐type structures in modeling the conditional volatility. |
doi_str_mv | 10.1002/for.2952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832173768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832173768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3782-cb58a9c0f2867e5894b7d62d7528e55368109f498b25b7347594c6afd3795c813</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmEvTJEsRxwsDA6IgbkKappqh03SSFOnb25kKrlydxfn4D-cH4BKjBUaI3NQ-LIhk5AjMMJIywxS_H4MZIpxnRSHpKTiLcYMQ4gKTGfhY-mCNjsm1nzDZsIUxhd6kPljoa5i-LHzWnW5ttLD0bQUHZ5sqQtcedl0YF605WA0bt-td5dIAU9DdOTipdRPtxe-cg7fl_evdY7ZaPzzd3a4yQ7kgmSmZ0NKgmoiCWyZkXvKqIBVnRFjGaCHGP-pcipKwktOcM5mbQtcV5ZIZgekcXE25XfC73sakNr4P7XhSEUEJ5pQXYlTXkzLBxxhsrbrgtjoMCiO1b06Nzal9cyOFE7XGty7-QcEkpVTQfCTZRL5dY4d_o9Ry_XKI_AEqlni_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832173768</pqid></control><display><type>article</type><title>Forecasting term structure of the Japanese bond yields in the presence of a liquidity trap</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Tsui, Albert K. ; Wu, Junxiang ; Zhang, Zhaoyong ; Zheng, Zhongxi</creator><creatorcontrib>Tsui, Albert K. ; Wu, Junxiang ; Zhang, Zhaoyong ; Zheng, Zhongxi</creatorcontrib><description>The Nelson–Siegel (NS) model is widely used in practice to fit the term structure of interest rates largely due to its high efficacy in the in‐sample fit and out‐of‐sample forecasting of bond yields. In this paper, we compare forecasting performances of estimated yields from the Nelson–Siegel‐based models and some simpler time series models, using the daily, weekly, and monthly data during a prolong period of liquidity trap in Japan. We find that the out‐of‐sample expanding window forecasts by NS‐based models in general perform less satisfactory than the competitor models. However, the NS‐based models can be useful in forecasting yields over longer horizons and can work well with GARCH‐type structures in modeling the conditional volatility.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2952</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Efficacy ; Forecasting ; Interest rates ; in‐sample fitting and out‐of‐sample forecasting ; Japanese bond yields ; Liquidity ; liquidity trap ; Nelson–Siegel model ; Time series</subject><ispartof>Journal of forecasting, 2023-08, Vol.42 (5), p.1205-1227</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3782-cb58a9c0f2867e5894b7d62d7528e55368109f498b25b7347594c6afd3795c813</cites><orcidid>0000-0001-9596-2648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2952$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2952$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Tsui, Albert K.</creatorcontrib><creatorcontrib>Wu, Junxiang</creatorcontrib><creatorcontrib>Zhang, Zhaoyong</creatorcontrib><creatorcontrib>Zheng, Zhongxi</creatorcontrib><title>Forecasting term structure of the Japanese bond yields in the presence of a liquidity trap</title><title>Journal of forecasting</title><description>The Nelson–Siegel (NS) model is widely used in practice to fit the term structure of interest rates largely due to its high efficacy in the in‐sample fit and out‐of‐sample forecasting of bond yields. In this paper, we compare forecasting performances of estimated yields from the Nelson–Siegel‐based models and some simpler time series models, using the daily, weekly, and monthly data during a prolong period of liquidity trap in Japan. We find that the out‐of‐sample expanding window forecasts by NS‐based models in general perform less satisfactory than the competitor models. However, the NS‐based models can be useful in forecasting yields over longer horizons and can work well with GARCH‐type structures in modeling the conditional volatility.</description><subject>Efficacy</subject><subject>Forecasting</subject><subject>Interest rates</subject><subject>in‐sample fitting and out‐of‐sample forecasting</subject><subject>Japanese bond yields</subject><subject>Liquidity</subject><subject>liquidity trap</subject><subject>Nelson–Siegel model</subject><subject>Time series</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmEvTJEsRxwsDA6IgbkKappqh03SSFOnb25kKrlydxfn4D-cH4BKjBUaI3NQ-LIhk5AjMMJIywxS_H4MZIpxnRSHpKTiLcYMQ4gKTGfhY-mCNjsm1nzDZsIUxhd6kPljoa5i-LHzWnW5ttLD0bQUHZ5sqQtcedl0YF605WA0bt-td5dIAU9DdOTipdRPtxe-cg7fl_evdY7ZaPzzd3a4yQ7kgmSmZ0NKgmoiCWyZkXvKqIBVnRFjGaCHGP-pcipKwktOcM5mbQtcV5ZIZgekcXE25XfC73sakNr4P7XhSEUEJ5pQXYlTXkzLBxxhsrbrgtjoMCiO1b06Nzal9cyOFE7XGty7-QcEkpVTQfCTZRL5dY4d_o9Ry_XKI_AEqlni_</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Tsui, Albert K.</creator><creator>Wu, Junxiang</creator><creator>Zhang, Zhaoyong</creator><creator>Zheng, Zhongxi</creator><general>Wiley Periodicals Inc</general><scope>24P</scope><scope>WIN</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-9596-2648</orcidid></search><sort><creationdate>202308</creationdate><title>Forecasting term structure of the Japanese bond yields in the presence of a liquidity trap</title><author>Tsui, Albert K. ; Wu, Junxiang ; Zhang, Zhaoyong ; Zheng, Zhongxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3782-cb58a9c0f2867e5894b7d62d7528e55368109f498b25b7347594c6afd3795c813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Efficacy</topic><topic>Forecasting</topic><topic>Interest rates</topic><topic>in‐sample fitting and out‐of‐sample forecasting</topic><topic>Japanese bond yields</topic><topic>Liquidity</topic><topic>liquidity trap</topic><topic>Nelson–Siegel model</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsui, Albert K.</creatorcontrib><creatorcontrib>Wu, Junxiang</creatorcontrib><creatorcontrib>Zhang, Zhaoyong</creatorcontrib><creatorcontrib>Zheng, Zhongxi</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsui, Albert K.</au><au>Wu, Junxiang</au><au>Zhang, Zhaoyong</au><au>Zheng, Zhongxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting term structure of the Japanese bond yields in the presence of a liquidity trap</atitle><jtitle>Journal of forecasting</jtitle><date>2023-08</date><risdate>2023</risdate><volume>42</volume><issue>5</issue><spage>1205</spage><epage>1227</epage><pages>1205-1227</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>The Nelson–Siegel (NS) model is widely used in practice to fit the term structure of interest rates largely due to its high efficacy in the in‐sample fit and out‐of‐sample forecasting of bond yields. In this paper, we compare forecasting performances of estimated yields from the Nelson–Siegel‐based models and some simpler time series models, using the daily, weekly, and monthly data during a prolong period of liquidity trap in Japan. We find that the out‐of‐sample expanding window forecasts by NS‐based models in general perform less satisfactory than the competitor models. However, the NS‐based models can be useful in forecasting yields over longer horizons and can work well with GARCH‐type structures in modeling the conditional volatility.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2952</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9596-2648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2023-08, Vol.42 (5), p.1205-1227 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_journals_2832173768 |
source | Business Source Complete; Wiley Online Library All Journals |
subjects | Efficacy Forecasting Interest rates in‐sample fitting and out‐of‐sample forecasting Japanese bond yields Liquidity liquidity trap Nelson–Siegel model Time series |
title | Forecasting term structure of the Japanese bond yields in the presence of a liquidity trap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20term%20structure%20of%20the%20Japanese%20bond%20yields%20in%20the%20presence%20of%20a%20liquidity%20trap&rft.jtitle=Journal%20of%20forecasting&rft.au=Tsui,%20Albert%20K.&rft.date=2023-08&rft.volume=42&rft.issue=5&rft.spage=1205&rft.epage=1227&rft.pages=1205-1227&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2952&rft_dat=%3Cproquest_cross%3E2832173768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832173768&rft_id=info:pmid/&rfr_iscdi=true |