Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction
Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correla...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science (2020) 2023-07, Vol.61 (13), p.1298-1307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1307 |
---|---|
container_issue | 13 |
container_start_page | 1298 |
container_title | Journal of polymer science (2020) |
container_volume | 61 |
creator | Zerin, Nagma Yin, Xinyang Maranas, Janna K. |
description | Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correlated with the glass transition temperature (Tg). The ionic conductivity is generally increased by making the polymer more flexible (decreasing Tg) and/or by increasing the amorphous regions of the SPE, at the cost of compromising its stiffness. This trade‐off makes it impossible to optimize both ionic conductivity and stiffness of SPEs. By incorporating a metal–organic framework (MOF) nanowhisker with the composition EO:Li = 6:1 [EO = ether oxygen, Li = lithium], we synthesized a unique composite electrolyte. We observed an atypical conductivity mechanism in this composite electrolyte, where lithium ions conduct through the crystalline regions without decreasing Tg or increasing amorphous fraction. The room‐temperature ionic conductivity of the 6:1 polymer electrolyte increased by almost 400% when 2 wt% MOF nanowhisker was added. Our results supported the potential of a composite electrolyte, which enables simultaneous improvement in both conductivity and stiffness. |
doi_str_mv | 10.1002/pol.20230002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832164303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832164303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2646-ee4fd296e325d92e6c4e83dd1d2fa841d4bc712cbe49d3ce55b2b15a9b9b79103</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEElXpjgNYYkuL_-I2y6riT6pUFrC2HHtCXZw4OIlKdj0CEjfsSXBVYMlq3kjfvJl5SXJJ8IRgTG9q7yYUU4Zjc5IMqOB0zInITv90is-TUdNsDgRLBcdikKwXvqx9Y1tA4EC3wbs-6q1t1yg69tCuewcVIP9hDSBVGVRCq9x-9-XDq6qsRkVQJWx9eEOFD8jFSduV-92n9RXSvjKdbqO8SM4K5RoY_dRh8nJ3-7x4GC9X94-L-XKs45ViDMALQzMBjKYmoyA0hxkzhhhaqBknhud6SqjOgWeGaUjTnOYkVVme5dOMYDZMro6-dfDvHTSt3PguVHGlpDNGieAMs0hdHykdfNMEKGQdbKlCLwmWhzhlfF7-xhlxdsS31kH_LyufVss5w4IJ9g0bFHv3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832164303</pqid></control><display><type>article</type><title>Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction</title><source>Wiley Online Library</source><creator>Zerin, Nagma ; Yin, Xinyang ; Maranas, Janna K.</creator><creatorcontrib>Zerin, Nagma ; Yin, Xinyang ; Maranas, Janna K.</creatorcontrib><description>Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correlated with the glass transition temperature (Tg). The ionic conductivity is generally increased by making the polymer more flexible (decreasing Tg) and/or by increasing the amorphous regions of the SPE, at the cost of compromising its stiffness. This trade‐off makes it impossible to optimize both ionic conductivity and stiffness of SPEs. By incorporating a metal–organic framework (MOF) nanowhisker with the composition EO:Li = 6:1 [EO = ether oxygen, Li = lithium], we synthesized a unique composite electrolyte. We observed an atypical conductivity mechanism in this composite electrolyte, where lithium ions conduct through the crystalline regions without decreasing Tg or increasing amorphous fraction. The room‐temperature ionic conductivity of the 6:1 polymer electrolyte increased by almost 400% when 2 wt% MOF nanowhisker was added. Our results supported the potential of a composite electrolyte, which enables simultaneous improvement in both conductivity and stiffness.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20230002</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>composite electrolyte ; Electrolytes ; Glass transition temperature ; Ion currents ; ionic conductivity ; Lithium ; Lithium-ion batteries ; Metal-organic frameworks ; metal–organic framework ; Molten salt electrolytes ; nanofiller ; PEO6 ; Polyethylene ; Polyethylene oxide ; Polymers ; Rechargeable batteries ; Solid electrolytes ; Stiffness</subject><ispartof>Journal of polymer science (2020), 2023-07, Vol.61 (13), p.1298-1307</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2646-ee4fd296e325d92e6c4e83dd1d2fa841d4bc712cbe49d3ce55b2b15a9b9b79103</cites><orcidid>0000-0002-7876-8488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20230002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20230002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zerin, Nagma</creatorcontrib><creatorcontrib>Yin, Xinyang</creatorcontrib><creatorcontrib>Maranas, Janna K.</creatorcontrib><title>Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction</title><title>Journal of polymer science (2020)</title><description>Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correlated with the glass transition temperature (Tg). The ionic conductivity is generally increased by making the polymer more flexible (decreasing Tg) and/or by increasing the amorphous regions of the SPE, at the cost of compromising its stiffness. This trade‐off makes it impossible to optimize both ionic conductivity and stiffness of SPEs. By incorporating a metal–organic framework (MOF) nanowhisker with the composition EO:Li = 6:1 [EO = ether oxygen, Li = lithium], we synthesized a unique composite electrolyte. We observed an atypical conductivity mechanism in this composite electrolyte, where lithium ions conduct through the crystalline regions without decreasing Tg or increasing amorphous fraction. The room‐temperature ionic conductivity of the 6:1 polymer electrolyte increased by almost 400% when 2 wt% MOF nanowhisker was added. Our results supported the potential of a composite electrolyte, which enables simultaneous improvement in both conductivity and stiffness.</description><subject>composite electrolyte</subject><subject>Electrolytes</subject><subject>Glass transition temperature</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal-organic frameworks</subject><subject>metal–organic framework</subject><subject>Molten salt electrolytes</subject><subject>nanofiller</subject><subject>PEO6</subject><subject>Polyethylene</subject><subject>Polyethylene oxide</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>Stiffness</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEElXpjgNYYkuL_-I2y6riT6pUFrC2HHtCXZw4OIlKdj0CEjfsSXBVYMlq3kjfvJl5SXJJ8IRgTG9q7yYUU4Zjc5IMqOB0zInITv90is-TUdNsDgRLBcdikKwXvqx9Y1tA4EC3wbs-6q1t1yg69tCuewcVIP9hDSBVGVRCq9x-9-XDq6qsRkVQJWx9eEOFD8jFSduV-92n9RXSvjKdbqO8SM4K5RoY_dRh8nJ3-7x4GC9X94-L-XKs45ViDMALQzMBjKYmoyA0hxkzhhhaqBknhud6SqjOgWeGaUjTnOYkVVme5dOMYDZMro6-dfDvHTSt3PguVHGlpDNGieAMs0hdHykdfNMEKGQdbKlCLwmWhzhlfF7-xhlxdsS31kH_LyufVss5w4IJ9g0bFHv3</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zerin, Nagma</creator><creator>Yin, Xinyang</creator><creator>Maranas, Janna K.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7876-8488</orcidid></search><sort><creationdate>20230701</creationdate><title>Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction</title><author>Zerin, Nagma ; Yin, Xinyang ; Maranas, Janna K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2646-ee4fd296e325d92e6c4e83dd1d2fa841d4bc712cbe49d3ce55b2b15a9b9b79103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>composite electrolyte</topic><topic>Electrolytes</topic><topic>Glass transition temperature</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal-organic frameworks</topic><topic>metal–organic framework</topic><topic>Molten salt electrolytes</topic><topic>nanofiller</topic><topic>PEO6</topic><topic>Polyethylene</topic><topic>Polyethylene oxide</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zerin, Nagma</creatorcontrib><creatorcontrib>Yin, Xinyang</creatorcontrib><creatorcontrib>Maranas, Janna K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zerin, Nagma</au><au>Yin, Xinyang</au><au>Maranas, Janna K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>61</volume><issue>13</issue><spage>1298</spage><epage>1307</epage><pages>1298-1307</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correlated with the glass transition temperature (Tg). The ionic conductivity is generally increased by making the polymer more flexible (decreasing Tg) and/or by increasing the amorphous regions of the SPE, at the cost of compromising its stiffness. This trade‐off makes it impossible to optimize both ionic conductivity and stiffness of SPEs. By incorporating a metal–organic framework (MOF) nanowhisker with the composition EO:Li = 6:1 [EO = ether oxygen, Li = lithium], we synthesized a unique composite electrolyte. We observed an atypical conductivity mechanism in this composite electrolyte, where lithium ions conduct through the crystalline regions without decreasing Tg or increasing amorphous fraction. The room‐temperature ionic conductivity of the 6:1 polymer electrolyte increased by almost 400% when 2 wt% MOF nanowhisker was added. Our results supported the potential of a composite electrolyte, which enables simultaneous improvement in both conductivity and stiffness.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pol.20230002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7876-8488</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2642-4150 |
ispartof | Journal of polymer science (2020), 2023-07, Vol.61 (13), p.1298-1307 |
issn | 2642-4150 2642-4169 |
language | eng |
recordid | cdi_proquest_journals_2832164303 |
source | Wiley Online Library |
subjects | composite electrolyte Electrolytes Glass transition temperature Ion currents ionic conductivity Lithium Lithium-ion batteries Metal-organic frameworks metal–organic framework Molten salt electrolytes nanofiller PEO6 Polyethylene Polyethylene oxide Polymers Rechargeable batteries Solid electrolytes Stiffness |
title | Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20electrolyte%20with%20polyethylene%20oxide%20and%20metal%E2%80%93organic%20framework%20for%20lithium%E2%80%90ion%20conduction&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Zerin,%20Nagma&rft.date=2023-07-01&rft.volume=61&rft.issue=13&rft.spage=1298&rft.epage=1307&rft.pages=1298-1307&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20230002&rft_dat=%3Cproquest_cross%3E2832164303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832164303&rft_id=info:pmid/&rfr_iscdi=true |