Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction

Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science (2020) 2023-07, Vol.61 (13), p.1298-1307
Hauptverfasser: Zerin, Nagma, Yin, Xinyang, Maranas, Janna K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1307
container_issue 13
container_start_page 1298
container_title Journal of polymer science (2020)
container_volume 61
creator Zerin, Nagma
Yin, Xinyang
Maranas, Janna K.
description Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correlated with the glass transition temperature (Tg). The ionic conductivity is generally increased by making the polymer more flexible (decreasing Tg) and/or by increasing the amorphous regions of the SPE, at the cost of compromising its stiffness. This trade‐off makes it impossible to optimize both ionic conductivity and stiffness of SPEs. By incorporating a metal–organic framework (MOF) nanowhisker with the composition EO:Li = 6:1 [EO = ether oxygen, Li = lithium], we synthesized a unique composite electrolyte. We observed an atypical conductivity mechanism in this composite electrolyte, where lithium ions conduct through the crystalline regions without decreasing Tg or increasing amorphous fraction. The room‐temperature ionic conductivity of the 6:1 polymer electrolyte increased by almost 400% when 2 wt% MOF nanowhisker was added. Our results supported the potential of a composite electrolyte, which enables simultaneous improvement in both conductivity and stiffness.
doi_str_mv 10.1002/pol.20230002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832164303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832164303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2646-ee4fd296e325d92e6c4e83dd1d2fa841d4bc712cbe49d3ce55b2b15a9b9b79103</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEElXpjgNYYkuL_-I2y6riT6pUFrC2HHtCXZw4OIlKdj0CEjfsSXBVYMlq3kjfvJl5SXJJ8IRgTG9q7yYUU4Zjc5IMqOB0zInITv90is-TUdNsDgRLBcdikKwXvqx9Y1tA4EC3wbs-6q1t1yg69tCuewcVIP9hDSBVGVRCq9x-9-XDq6qsRkVQJWx9eEOFD8jFSduV-92n9RXSvjKdbqO8SM4K5RoY_dRh8nJ3-7x4GC9X94-L-XKs45ViDMALQzMBjKYmoyA0hxkzhhhaqBknhud6SqjOgWeGaUjTnOYkVVme5dOMYDZMro6-dfDvHTSt3PguVHGlpDNGieAMs0hdHykdfNMEKGQdbKlCLwmWhzhlfF7-xhlxdsS31kH_LyufVss5w4IJ9g0bFHv3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832164303</pqid></control><display><type>article</type><title>Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction</title><source>Wiley Online Library</source><creator>Zerin, Nagma ; Yin, Xinyang ; Maranas, Janna K.</creator><creatorcontrib>Zerin, Nagma ; Yin, Xinyang ; Maranas, Janna K.</creatorcontrib><description>Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correlated with the glass transition temperature (Tg). The ionic conductivity is generally increased by making the polymer more flexible (decreasing Tg) and/or by increasing the amorphous regions of the SPE, at the cost of compromising its stiffness. This trade‐off makes it impossible to optimize both ionic conductivity and stiffness of SPEs. By incorporating a metal–organic framework (MOF) nanowhisker with the composition EO:Li = 6:1 [EO = ether oxygen, Li = lithium], we synthesized a unique composite electrolyte. We observed an atypical conductivity mechanism in this composite electrolyte, where lithium ions conduct through the crystalline regions without decreasing Tg or increasing amorphous fraction. The room‐temperature ionic conductivity of the 6:1 polymer electrolyte increased by almost 400% when 2 wt% MOF nanowhisker was added. Our results supported the potential of a composite electrolyte, which enables simultaneous improvement in both conductivity and stiffness.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20230002</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>composite electrolyte ; Electrolytes ; Glass transition temperature ; Ion currents ; ionic conductivity ; Lithium ; Lithium-ion batteries ; Metal-organic frameworks ; metal–organic framework ; Molten salt electrolytes ; nanofiller ; PEO6 ; Polyethylene ; Polyethylene oxide ; Polymers ; Rechargeable batteries ; Solid electrolytes ; Stiffness</subject><ispartof>Journal of polymer science (2020), 2023-07, Vol.61 (13), p.1298-1307</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2646-ee4fd296e325d92e6c4e83dd1d2fa841d4bc712cbe49d3ce55b2b15a9b9b79103</cites><orcidid>0000-0002-7876-8488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20230002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20230002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zerin, Nagma</creatorcontrib><creatorcontrib>Yin, Xinyang</creatorcontrib><creatorcontrib>Maranas, Janna K.</creatorcontrib><title>Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction</title><title>Journal of polymer science (2020)</title><description>Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correlated with the glass transition temperature (Tg). The ionic conductivity is generally increased by making the polymer more flexible (decreasing Tg) and/or by increasing the amorphous regions of the SPE, at the cost of compromising its stiffness. This trade‐off makes it impossible to optimize both ionic conductivity and stiffness of SPEs. By incorporating a metal–organic framework (MOF) nanowhisker with the composition EO:Li = 6:1 [EO = ether oxygen, Li = lithium], we synthesized a unique composite electrolyte. We observed an atypical conductivity mechanism in this composite electrolyte, where lithium ions conduct through the crystalline regions without decreasing Tg or increasing amorphous fraction. The room‐temperature ionic conductivity of the 6:1 polymer electrolyte increased by almost 400% when 2 wt% MOF nanowhisker was added. Our results supported the potential of a composite electrolyte, which enables simultaneous improvement in both conductivity and stiffness.</description><subject>composite electrolyte</subject><subject>Electrolytes</subject><subject>Glass transition temperature</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal-organic frameworks</subject><subject>metal–organic framework</subject><subject>Molten salt electrolytes</subject><subject>nanofiller</subject><subject>PEO6</subject><subject>Polyethylene</subject><subject>Polyethylene oxide</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>Stiffness</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEElXpjgNYYkuL_-I2y6riT6pUFrC2HHtCXZw4OIlKdj0CEjfsSXBVYMlq3kjfvJl5SXJJ8IRgTG9q7yYUU4Zjc5IMqOB0zInITv90is-TUdNsDgRLBcdikKwXvqx9Y1tA4EC3wbs-6q1t1yg69tCuewcVIP9hDSBVGVRCq9x-9-XDq6qsRkVQJWx9eEOFD8jFSduV-92n9RXSvjKdbqO8SM4K5RoY_dRh8nJ3-7x4GC9X94-L-XKs45ViDMALQzMBjKYmoyA0hxkzhhhaqBknhud6SqjOgWeGaUjTnOYkVVme5dOMYDZMro6-dfDvHTSt3PguVHGlpDNGieAMs0hdHykdfNMEKGQdbKlCLwmWhzhlfF7-xhlxdsS31kH_LyufVss5w4IJ9g0bFHv3</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zerin, Nagma</creator><creator>Yin, Xinyang</creator><creator>Maranas, Janna K.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7876-8488</orcidid></search><sort><creationdate>20230701</creationdate><title>Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction</title><author>Zerin, Nagma ; Yin, Xinyang ; Maranas, Janna K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2646-ee4fd296e325d92e6c4e83dd1d2fa841d4bc712cbe49d3ce55b2b15a9b9b79103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>composite electrolyte</topic><topic>Electrolytes</topic><topic>Glass transition temperature</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal-organic frameworks</topic><topic>metal–organic framework</topic><topic>Molten salt electrolytes</topic><topic>nanofiller</topic><topic>PEO6</topic><topic>Polyethylene</topic><topic>Polyethylene oxide</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zerin, Nagma</creatorcontrib><creatorcontrib>Yin, Xinyang</creatorcontrib><creatorcontrib>Maranas, Janna K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zerin, Nagma</au><au>Yin, Xinyang</au><au>Maranas, Janna K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>61</volume><issue>13</issue><spage>1298</spage><epage>1307</epage><pages>1298-1307</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>Polyethylene oxide based solid polymer electrolytes (SPEs) are safer alternatives to the current flammable liquid electrolytes used in lithium‐ion batteries. Lithium ions are typically thought to conduct through the amorphous regions of SPEs with the aid of polymer segmental motion, which is correlated with the glass transition temperature (Tg). The ionic conductivity is generally increased by making the polymer more flexible (decreasing Tg) and/or by increasing the amorphous regions of the SPE, at the cost of compromising its stiffness. This trade‐off makes it impossible to optimize both ionic conductivity and stiffness of SPEs. By incorporating a metal–organic framework (MOF) nanowhisker with the composition EO:Li = 6:1 [EO = ether oxygen, Li = lithium], we synthesized a unique composite electrolyte. We observed an atypical conductivity mechanism in this composite electrolyte, where lithium ions conduct through the crystalline regions without decreasing Tg or increasing amorphous fraction. The room‐temperature ionic conductivity of the 6:1 polymer electrolyte increased by almost 400% when 2 wt% MOF nanowhisker was added. Our results supported the potential of a composite electrolyte, which enables simultaneous improvement in both conductivity and stiffness.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pol.20230002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7876-8488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2642-4150
ispartof Journal of polymer science (2020), 2023-07, Vol.61 (13), p.1298-1307
issn 2642-4150
2642-4169
language eng
recordid cdi_proquest_journals_2832164303
source Wiley Online Library
subjects composite electrolyte
Electrolytes
Glass transition temperature
Ion currents
ionic conductivity
Lithium
Lithium-ion batteries
Metal-organic frameworks
metal–organic framework
Molten salt electrolytes
nanofiller
PEO6
Polyethylene
Polyethylene oxide
Polymers
Rechargeable batteries
Solid electrolytes
Stiffness
title Composite electrolyte with polyethylene oxide and metal–organic framework for lithium‐ion conduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20electrolyte%20with%20polyethylene%20oxide%20and%20metal%E2%80%93organic%20framework%20for%20lithium%E2%80%90ion%20conduction&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Zerin,%20Nagma&rft.date=2023-07-01&rft.volume=61&rft.issue=13&rft.spage=1298&rft.epage=1307&rft.pages=1298-1307&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20230002&rft_dat=%3Cproquest_cross%3E2832164303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832164303&rft_id=info:pmid/&rfr_iscdi=true