Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties

Acenaphtho[1,2- k ]fluoranthene ( 1 ) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene ( 2 ) on activated γ-Al 2 O 3 . Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian Journal of Physical Chemistry A 2023-07, Vol.97 (7), p.1475-1488
Hauptverfasser: Brotsman, V. A., Lukonina, N. S., Rybalchenko, A. V., Kosaya, M. P., Ioffe, I. N., Lysenko, K. A., Sidorov, L. N., Pshenichnyuk, S. A., Asfandiarov, N. L., Goryunkov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1488
container_issue 7
container_start_page 1475
container_title Russian Journal of Physical Chemistry A
container_volume 97
creator Brotsman, V. A.
Lukonina, N. S.
Rybalchenko, A. V.
Kosaya, M. P.
Ioffe, I. N.
Lysenko, K. A.
Sidorov, L. N.
Pshenichnyuk, S. A.
Asfandiarov, N. L.
Goryunkov, A. A.
description Acenaphtho[1,2- k ]fluoranthene ( 1 ) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene ( 2 ) on activated γ-Al 2 O 3 . Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of fluoroarenes with the formation a product of partial cyclization, 9-(1-naphthyl)fluoranthen-8-ol ( 1b ). The formation of negative ions (NI) of compounds 1 and 2 in the gas phase is studied by means of dissociative electron attachment (DEA) spectroscopy. Long-lived molecular NIs 1 and 2 are registered at the thermal energies of electrons, and patterns of their fragmentation are established. The adiabatic electron affinities of compounds 1 and 2 are estimated in the Arrhenius approximation and equal 1.17 ± 0.12 and 0.71 ± 0.07 eV, respectively, which agree with data from quantum chemical modeling at the level of the density functional theory (DFT). Electronic transitions for compounds 1 and 2 are studied via optical absorption and fluorescence spectroscopy. Fluorescence quantum yields are measured, and the resulting data are interpreted according to the time dependent DFT. The electrochemical properties of compounds 1 , 1b , and 2 are studied via cyclic voltamperometry, and the levels of boundary molecular orbitals are estimated on the basis of their formal potentials of reduction and oxidation.
doi_str_mv 10.1134/S003602442307004X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2831808069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831808069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-110e1e2d5b3f2fb69431b9cfc9c8ab2abf8717e17e2a6dc98261e026046995903</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvAq6uZJE033kqxKhQUrVAQWbJp0m67TdZkF_Hfm1LBgwgDM8P73hsYhM6BXAEwfv1CCBOEck4ZGRLC5weoBwMGWS7Y_BD1dnK204_RSYzrRHAOvIfWI22calatf4NLmm3ebd35oFy7Ms7c4GdfG-wtTiseq1B6hydBbc2nDxs8S1y0PmxVWyUhTXjWucot8W1tdBu8qzR-Cr4xoa1MPEVHVtXRnP30Pnqd3M7G99n08e5hPJpmmgG0GQAxYOhiUDJLbSkkZ1BKbbXUuSqpKm0-hKFJRZVYaJlTAYZQQbiQciAJ66OLfW4T_EdnYlusfRdcOlnQnEFOciJkomBP6eBjDMYWTai2KnwVQIrdS4s_L00euvfExLqlCb_J_5u-AaTseK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831808069</pqid></control><display><type>article</type><title>Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Brotsman, V. A. ; Lukonina, N. S. ; Rybalchenko, A. V. ; Kosaya, M. P. ; Ioffe, I. N. ; Lysenko, K. A. ; Sidorov, L. N. ; Pshenichnyuk, S. A. ; Asfandiarov, N. L. ; Goryunkov, A. A.</creator><creatorcontrib>Brotsman, V. A. ; Lukonina, N. S. ; Rybalchenko, A. V. ; Kosaya, M. P. ; Ioffe, I. N. ; Lysenko, K. A. ; Sidorov, L. N. ; Pshenichnyuk, S. A. ; Asfandiarov, N. L. ; Goryunkov, A. A.</creatorcontrib><description>Acenaphtho[1,2- k ]fluoranthene ( 1 ) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene ( 2 ) on activated γ-Al 2 O 3 . Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of fluoroarenes with the formation a product of partial cyclization, 9-(1-naphthyl)fluoranthen-8-ol ( 1b ). The formation of negative ions (NI) of compounds 1 and 2 in the gas phase is studied by means of dissociative electron attachment (DEA) spectroscopy. Long-lived molecular NIs 1 and 2 are registered at the thermal energies of electrons, and patterns of their fragmentation are established. The adiabatic electron affinities of compounds 1 and 2 are estimated in the Arrhenius approximation and equal 1.17 ± 0.12 and 0.71 ± 0.07 eV, respectively, which agree with data from quantum chemical modeling at the level of the density functional theory (DFT). Electronic transitions for compounds 1 and 2 are studied via optical absorption and fluorescence spectroscopy. Fluorescence quantum yields are measured, and the resulting data are interpreted according to the time dependent DFT. The electrochemical properties of compounds 1 , 1b , and 2 are studied via cyclic voltamperometry, and the levels of boundary molecular orbitals are estimated on the basis of their formal potentials of reduction and oxidation.</description><identifier>ISSN: 0036-0244</identifier><identifier>EISSN: 1531-863X</identifier><identifier>DOI: 10.1134/S003602442307004X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum oxide ; Chemistry ; Chemistry and Materials Science ; Density functional theory ; Electrochemical analysis ; Electron attachment ; Electron transitions ; Electrons ; Fluorescence ; Hydroxyl groups ; Molecular orbitals ; Negative ions ; Oxidation ; Physical Chemistry ; Quantum chemistry ; Spectrum analysis ; Structure of Matter and Quantum Chemistry ; Transitional aluminas ; Vapor phases</subject><ispartof>Russian Journal of Physical Chemistry A, 2023-07, Vol.97 (7), p.1475-1488</ispartof><rights>The Author(s) 2023. ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2023, Vol. 97, No. 7, pp. 1475–1488. © The Author(s), 2023. This article is an open access publication. Russian Text © The Author(s), 2023, published in Zhurnal Fizicheskoi Khimii, 2023, Vol. 97, No. 7, pp. 996–1010.</rights><rights>The Author(s) 2023. ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2023, Vol. 97, No. 7, pp. 1475–1488. © The Author(s), 2023. This article is an open access publication. Russian Text © The Author(s), 2023, published in Zhurnal Fizicheskoi Khimii, 2023, Vol. 97, No. 7, pp. 996–1010. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-110e1e2d5b3f2fb69431b9cfc9c8ab2abf8717e17e2a6dc98261e026046995903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S003602442307004X$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S003602442307004X$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Brotsman, V. A.</creatorcontrib><creatorcontrib>Lukonina, N. S.</creatorcontrib><creatorcontrib>Rybalchenko, A. V.</creatorcontrib><creatorcontrib>Kosaya, M. P.</creatorcontrib><creatorcontrib>Ioffe, I. N.</creatorcontrib><creatorcontrib>Lysenko, K. A.</creatorcontrib><creatorcontrib>Sidorov, L. N.</creatorcontrib><creatorcontrib>Pshenichnyuk, S. A.</creatorcontrib><creatorcontrib>Asfandiarov, N. L.</creatorcontrib><creatorcontrib>Goryunkov, A. A.</creatorcontrib><title>Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties</title><title>Russian Journal of Physical Chemistry A</title><addtitle>Russ. J. Phys. Chem</addtitle><description>Acenaphtho[1,2- k ]fluoranthene ( 1 ) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene ( 2 ) on activated γ-Al 2 O 3 . Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of fluoroarenes with the formation a product of partial cyclization, 9-(1-naphthyl)fluoranthen-8-ol ( 1b ). The formation of negative ions (NI) of compounds 1 and 2 in the gas phase is studied by means of dissociative electron attachment (DEA) spectroscopy. Long-lived molecular NIs 1 and 2 are registered at the thermal energies of electrons, and patterns of their fragmentation are established. The adiabatic electron affinities of compounds 1 and 2 are estimated in the Arrhenius approximation and equal 1.17 ± 0.12 and 0.71 ± 0.07 eV, respectively, which agree with data from quantum chemical modeling at the level of the density functional theory (DFT). Electronic transitions for compounds 1 and 2 are studied via optical absorption and fluorescence spectroscopy. Fluorescence quantum yields are measured, and the resulting data are interpreted according to the time dependent DFT. The electrochemical properties of compounds 1 , 1b , and 2 are studied via cyclic voltamperometry, and the levels of boundary molecular orbitals are estimated on the basis of their formal potentials of reduction and oxidation.</description><subject>Aluminum oxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Electrochemical analysis</subject><subject>Electron attachment</subject><subject>Electron transitions</subject><subject>Electrons</subject><subject>Fluorescence</subject><subject>Hydroxyl groups</subject><subject>Molecular orbitals</subject><subject>Negative ions</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Quantum chemistry</subject><subject>Spectrum analysis</subject><subject>Structure of Matter and Quantum Chemistry</subject><subject>Transitional aluminas</subject><subject>Vapor phases</subject><issn>0036-0244</issn><issn>1531-863X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvAq6uZJE033kqxKhQUrVAQWbJp0m67TdZkF_Hfm1LBgwgDM8P73hsYhM6BXAEwfv1CCBOEck4ZGRLC5weoBwMGWS7Y_BD1dnK204_RSYzrRHAOvIfWI22calatf4NLmm3ebd35oFy7Ms7c4GdfG-wtTiseq1B6hydBbc2nDxs8S1y0PmxVWyUhTXjWucot8W1tdBu8qzR-Cr4xoa1MPEVHVtXRnP30Pnqd3M7G99n08e5hPJpmmgG0GQAxYOhiUDJLbSkkZ1BKbbXUuSqpKm0-hKFJRZVYaJlTAYZQQbiQciAJ66OLfW4T_EdnYlusfRdcOlnQnEFOciJkomBP6eBjDMYWTai2KnwVQIrdS4s_L00euvfExLqlCb_J_5u-AaTseK4</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Brotsman, V. A.</creator><creator>Lukonina, N. S.</creator><creator>Rybalchenko, A. V.</creator><creator>Kosaya, M. P.</creator><creator>Ioffe, I. N.</creator><creator>Lysenko, K. A.</creator><creator>Sidorov, L. N.</creator><creator>Pshenichnyuk, S. A.</creator><creator>Asfandiarov, N. L.</creator><creator>Goryunkov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties</title><author>Brotsman, V. A. ; Lukonina, N. S. ; Rybalchenko, A. V. ; Kosaya, M. P. ; Ioffe, I. N. ; Lysenko, K. A. ; Sidorov, L. N. ; Pshenichnyuk, S. A. ; Asfandiarov, N. L. ; Goryunkov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-110e1e2d5b3f2fb69431b9cfc9c8ab2abf8717e17e2a6dc98261e026046995903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Electrochemical analysis</topic><topic>Electron attachment</topic><topic>Electron transitions</topic><topic>Electrons</topic><topic>Fluorescence</topic><topic>Hydroxyl groups</topic><topic>Molecular orbitals</topic><topic>Negative ions</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Quantum chemistry</topic><topic>Spectrum analysis</topic><topic>Structure of Matter and Quantum Chemistry</topic><topic>Transitional aluminas</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brotsman, V. A.</creatorcontrib><creatorcontrib>Lukonina, N. S.</creatorcontrib><creatorcontrib>Rybalchenko, A. V.</creatorcontrib><creatorcontrib>Kosaya, M. P.</creatorcontrib><creatorcontrib>Ioffe, I. N.</creatorcontrib><creatorcontrib>Lysenko, K. A.</creatorcontrib><creatorcontrib>Sidorov, L. N.</creatorcontrib><creatorcontrib>Pshenichnyuk, S. A.</creatorcontrib><creatorcontrib>Asfandiarov, N. L.</creatorcontrib><creatorcontrib>Goryunkov, A. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Russian Journal of Physical Chemistry A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brotsman, V. A.</au><au>Lukonina, N. S.</au><au>Rybalchenko, A. V.</au><au>Kosaya, M. P.</au><au>Ioffe, I. N.</au><au>Lysenko, K. A.</au><au>Sidorov, L. N.</au><au>Pshenichnyuk, S. A.</au><au>Asfandiarov, N. L.</au><au>Goryunkov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties</atitle><jtitle>Russian Journal of Physical Chemistry A</jtitle><stitle>Russ. J. Phys. Chem</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>97</volume><issue>7</issue><spage>1475</spage><epage>1488</epage><pages>1475-1488</pages><issn>0036-0244</issn><eissn>1531-863X</eissn><abstract>Acenaphtho[1,2- k ]fluoranthene ( 1 ) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene ( 2 ) on activated γ-Al 2 O 3 . Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of fluoroarenes with the formation a product of partial cyclization, 9-(1-naphthyl)fluoranthen-8-ol ( 1b ). The formation of negative ions (NI) of compounds 1 and 2 in the gas phase is studied by means of dissociative electron attachment (DEA) spectroscopy. Long-lived molecular NIs 1 and 2 are registered at the thermal energies of electrons, and patterns of their fragmentation are established. The adiabatic electron affinities of compounds 1 and 2 are estimated in the Arrhenius approximation and equal 1.17 ± 0.12 and 0.71 ± 0.07 eV, respectively, which agree with data from quantum chemical modeling at the level of the density functional theory (DFT). Electronic transitions for compounds 1 and 2 are studied via optical absorption and fluorescence spectroscopy. Fluorescence quantum yields are measured, and the resulting data are interpreted according to the time dependent DFT. The electrochemical properties of compounds 1 , 1b , and 2 are studied via cyclic voltamperometry, and the levels of boundary molecular orbitals are estimated on the basis of their formal potentials of reduction and oxidation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S003602442307004X</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-0244
ispartof Russian Journal of Physical Chemistry A, 2023-07, Vol.97 (7), p.1475-1488
issn 0036-0244
1531-863X
language eng
recordid cdi_proquest_journals_2831808069
source Springer Nature - Complete Springer Journals
subjects Aluminum oxide
Chemistry
Chemistry and Materials Science
Density functional theory
Electrochemical analysis
Electron attachment
Electron transitions
Electrons
Fluorescence
Hydroxyl groups
Molecular orbitals
Negative ions
Oxidation
Physical Chemistry
Quantum chemistry
Spectrum analysis
Structure of Matter and Quantum Chemistry
Transitional aluminas
Vapor phases
title Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acenaphto%5B1,2-k%5Dfluoranthene:%20Role%20of%20the%20Carbon%20Framework%20Transformation%20for%20Tuning%20Electronic%20Properties&rft.jtitle=Russian%20Journal%20of%20Physical%20Chemistry%20A&rft.au=Brotsman,%20V.%20A.&rft.date=2023-07-01&rft.volume=97&rft.issue=7&rft.spage=1475&rft.epage=1488&rft.pages=1475-1488&rft.issn=0036-0244&rft.eissn=1531-863X&rft_id=info:doi/10.1134/S003602442307004X&rft_dat=%3Cproquest_cross%3E2831808069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831808069&rft_id=info:pmid/&rfr_iscdi=true