The Gell-Mann–Brueckner Formula for the Correlation Energy of the Electron Gas: A Rigorous Upper Bound in the Mean-Field Regime

We prove a rigorous upper bound on the correlation energy of interacting fermions in the mean-field regime for a wide class of interaction potentials. Our result covers the Coulomb potential, and in this case we obtain the analogue of the Gell-Mann–Brueckner formula c 1 ρ log ρ + c 2 ρ in the high d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-07, Vol.401 (2), p.1469-1529
Hauptverfasser: Christiansen, Martin Ravn, Hainzl, Christian, Nam, Phan Thành
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1529
container_issue 2
container_start_page 1469
container_title Communications in mathematical physics
container_volume 401
creator Christiansen, Martin Ravn
Hainzl, Christian
Nam, Phan Thành
description We prove a rigorous upper bound on the correlation energy of interacting fermions in the mean-field regime for a wide class of interaction potentials. Our result covers the Coulomb potential, and in this case we obtain the analogue of the Gell-Mann–Brueckner formula c 1 ρ log ρ + c 2 ρ in the high density limit. We do this by refining the analysis of our bosonization method to deal with singular potentials, and to capture the exchange contribution which is absent in the purely bosonic picture.
doi_str_mv 10.1007/s00220-023-04672-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2831807545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831807545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2074532f1b51d4700569cc0f4135d53352cd952f9c4e41908718a7adb7160a3a3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWBvGduIk7ErVFqRWSFW7ttzECSmpXexk0R2cgRtyEkyDxI7VSDPv_5EeQtcUbilAcucBGAMCjBOIRMIIO0EDGnFGIKPiFA0AKBAuqDhHF95vASBjQgzQx-pF45luGrJQxny9fz64TuevRjs8tW7XNQqX1uE2UGPrnG5UW1uDJwGoDtiWx8uk0Xnrwnqm_D0e4WVdWWc7j9f7fSh6sJ0pcG2O7EIrQ6a1bgq81FW905forFSN11e_c4jW08lq_Ejmz7On8WhOci54SxgkUcxZSTcxLaIEIBZZnkMZUR4XMecxy4ssZmWWRzqiGaQJTVWiik1CBSiu-BDd9L17Z9867Vu5tZ0z4aVkKacpJHF4MESsp3JnvXe6lHtX75Q7SAryR7XsVcugWh5VSxZCvA_5AJtKu7_qf1LfTMCAdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831807545</pqid></control><display><type>article</type><title>The Gell-Mann–Brueckner Formula for the Correlation Energy of the Electron Gas: A Rigorous Upper Bound in the Mean-Field Regime</title><source>Springer Nature - Complete Springer Journals</source><creator>Christiansen, Martin Ravn ; Hainzl, Christian ; Nam, Phan Thành</creator><creatorcontrib>Christiansen, Martin Ravn ; Hainzl, Christian ; Nam, Phan Thành</creatorcontrib><description>We prove a rigorous upper bound on the correlation energy of interacting fermions in the mean-field regime for a wide class of interaction potentials. Our result covers the Coulomb potential, and in this case we obtain the analogue of the Gell-Mann–Brueckner formula c 1 ρ log ρ + c 2 ρ in the high density limit. We do this by refining the analysis of our bosonization method to deal with singular potentials, and to capture the exchange contribution which is absent in the purely bosonic picture.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-023-04672-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Coulomb potential ; Electron gas ; Fermions ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical ; Upper bounds</subject><ispartof>Communications in mathematical physics, 2023-07, Vol.401 (2), p.1469-1529</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2074532f1b51d4700569cc0f4135d53352cd952f9c4e41908718a7adb7160a3a3</citedby><cites>FETCH-LOGICAL-c363t-2074532f1b51d4700569cc0f4135d53352cd952f9c4e41908718a7adb7160a3a3</cites><orcidid>0000-0002-9772-7323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-023-04672-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-023-04672-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Christiansen, Martin Ravn</creatorcontrib><creatorcontrib>Hainzl, Christian</creatorcontrib><creatorcontrib>Nam, Phan Thành</creatorcontrib><title>The Gell-Mann–Brueckner Formula for the Correlation Energy of the Electron Gas: A Rigorous Upper Bound in the Mean-Field Regime</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We prove a rigorous upper bound on the correlation energy of interacting fermions in the mean-field regime for a wide class of interaction potentials. Our result covers the Coulomb potential, and in this case we obtain the analogue of the Gell-Mann–Brueckner formula c 1 ρ log ρ + c 2 ρ in the high density limit. We do this by refining the analysis of our bosonization method to deal with singular potentials, and to capture the exchange contribution which is absent in the purely bosonic picture.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Coulomb potential</subject><subject>Electron gas</subject><subject>Fermions</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWBvGduIk7ErVFqRWSFW7ttzECSmpXexk0R2cgRtyEkyDxI7VSDPv_5EeQtcUbilAcucBGAMCjBOIRMIIO0EDGnFGIKPiFA0AKBAuqDhHF95vASBjQgzQx-pF45luGrJQxny9fz64TuevRjs8tW7XNQqX1uE2UGPrnG5UW1uDJwGoDtiWx8uk0Xnrwnqm_D0e4WVdWWc7j9f7fSh6sJ0pcG2O7EIrQ6a1bgq81FW905forFSN11e_c4jW08lq_Ejmz7On8WhOci54SxgkUcxZSTcxLaIEIBZZnkMZUR4XMecxy4ssZmWWRzqiGaQJTVWiik1CBSiu-BDd9L17Z9867Vu5tZ0z4aVkKacpJHF4MESsp3JnvXe6lHtX75Q7SAryR7XsVcugWh5VSxZCvA_5AJtKu7_qf1LfTMCAdQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Christiansen, Martin Ravn</creator><creator>Hainzl, Christian</creator><creator>Nam, Phan Thành</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9772-7323</orcidid></search><sort><creationdate>20230701</creationdate><title>The Gell-Mann–Brueckner Formula for the Correlation Energy of the Electron Gas: A Rigorous Upper Bound in the Mean-Field Regime</title><author>Christiansen, Martin Ravn ; Hainzl, Christian ; Nam, Phan Thành</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2074532f1b51d4700569cc0f4135d53352cd952f9c4e41908718a7adb7160a3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Coulomb potential</topic><topic>Electron gas</topic><topic>Fermions</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christiansen, Martin Ravn</creatorcontrib><creatorcontrib>Hainzl, Christian</creatorcontrib><creatorcontrib>Nam, Phan Thành</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christiansen, Martin Ravn</au><au>Hainzl, Christian</au><au>Nam, Phan Thành</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Gell-Mann–Brueckner Formula for the Correlation Energy of the Electron Gas: A Rigorous Upper Bound in the Mean-Field Regime</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>401</volume><issue>2</issue><spage>1469</spage><epage>1529</epage><pages>1469-1529</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We prove a rigorous upper bound on the correlation energy of interacting fermions in the mean-field regime for a wide class of interaction potentials. Our result covers the Coulomb potential, and in this case we obtain the analogue of the Gell-Mann–Brueckner formula c 1 ρ log ρ + c 2 ρ in the high density limit. We do this by refining the analysis of our bosonization method to deal with singular potentials, and to capture the exchange contribution which is absent in the purely bosonic picture.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-023-04672-2</doi><tpages>61</tpages><orcidid>https://orcid.org/0000-0002-9772-7323</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2023-07, Vol.401 (2), p.1469-1529
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2831807545
source Springer Nature - Complete Springer Journals
subjects Classical and Quantum Gravitation
Complex Systems
Coulomb potential
Electron gas
Fermions
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
Upper bounds
title The Gell-Mann–Brueckner Formula for the Correlation Energy of the Electron Gas: A Rigorous Upper Bound in the Mean-Field Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Gell-Mann%E2%80%93Brueckner%20Formula%20for%20the%20Correlation%20Energy%20of%20the%20Electron%20Gas:%20A%20Rigorous%20Upper%20Bound%20in%20the%20Mean-Field%20Regime&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Christiansen,%20Martin%20Ravn&rft.date=2023-07-01&rft.volume=401&rft.issue=2&rft.spage=1469&rft.epage=1529&rft.pages=1469-1529&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-023-04672-2&rft_dat=%3Cproquest_cross%3E2831807545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831807545&rft_id=info:pmid/&rfr_iscdi=true