String Model Building on Quantum Annealers

We explore for the first time the direct construction of string models on quantum annealers, and investigate their efficiency and effectiveness in the model discovery process. Through a thorough comparison with traditional methods such as simulated annealing, random scans, and genetic algorithms, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Abel, Steven A, Nutricati, Luca A, Rizos, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Abel, Steven A
Nutricati, Luca A
Rizos, John
description We explore for the first time the direct construction of string models on quantum annealers, and investigate their efficiency and effectiveness in the model discovery process. Through a thorough comparison with traditional methods such as simulated annealing, random scans, and genetic algorithms, we highlight the potential advantages offered by quantum annealers, which in this study promised to be roughly fifty times faster than random scans and genetic algorithm and approximately four times faster than simulated annealing.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2831673816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831673816</sourcerecordid><originalsourceid>FETCH-proquest_journals_28316738163</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCi4pysxLV_DNT0nNUXAqzcxJAXHz8xQCSxPzSkpzFRzz8lITc1KLinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwtjQzNzYwtDMmDhVAPSvMKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831673816</pqid></control><display><type>article</type><title>String Model Building on Quantum Annealers</title><source>Free E- Journals</source><creator>Abel, Steven A ; Nutricati, Luca A ; Rizos, John</creator><creatorcontrib>Abel, Steven A ; Nutricati, Luca A ; Rizos, John</creatorcontrib><description>We explore for the first time the direct construction of string models on quantum annealers, and investigate their efficiency and effectiveness in the model discovery process. Through a thorough comparison with traditional methods such as simulated annealing, random scans, and genetic algorithms, we highlight the potential advantages offered by quantum annealers, which in this study promised to be roughly fifty times faster than random scans and genetic algorithm and approximately four times faster than simulated annealing.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Genetic algorithms ; Simulated annealing ; Strings</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Abel, Steven A</creatorcontrib><creatorcontrib>Nutricati, Luca A</creatorcontrib><creatorcontrib>Rizos, John</creatorcontrib><title>String Model Building on Quantum Annealers</title><title>arXiv.org</title><description>We explore for the first time the direct construction of string models on quantum annealers, and investigate their efficiency and effectiveness in the model discovery process. Through a thorough comparison with traditional methods such as simulated annealing, random scans, and genetic algorithms, we highlight the potential advantages offered by quantum annealers, which in this study promised to be roughly fifty times faster than random scans and genetic algorithm and approximately four times faster than simulated annealing.</description><subject>Genetic algorithms</subject><subject>Simulated annealing</subject><subject>Strings</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCi4pysxLV_DNT0nNUXAqzcxJAXHz8xQCSxPzSkpzFRzz8lITc1KLinkYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwtjQzNzYwtDMmDhVAPSvMKA</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Abel, Steven A</creator><creator>Nutricati, Luca A</creator><creator>Rizos, John</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230629</creationdate><title>String Model Building on Quantum Annealers</title><author>Abel, Steven A ; Nutricati, Luca A ; Rizos, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28316738163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Genetic algorithms</topic><topic>Simulated annealing</topic><topic>Strings</topic><toplevel>online_resources</toplevel><creatorcontrib>Abel, Steven A</creatorcontrib><creatorcontrib>Nutricati, Luca A</creatorcontrib><creatorcontrib>Rizos, John</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abel, Steven A</au><au>Nutricati, Luca A</au><au>Rizos, John</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>String Model Building on Quantum Annealers</atitle><jtitle>arXiv.org</jtitle><date>2023-06-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We explore for the first time the direct construction of string models on quantum annealers, and investigate their efficiency and effectiveness in the model discovery process. Through a thorough comparison with traditional methods such as simulated annealing, random scans, and genetic algorithms, we highlight the potential advantages offered by quantum annealers, which in this study promised to be roughly fifty times faster than random scans and genetic algorithm and approximately four times faster than simulated annealing.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2831673816
source Free E- Journals
subjects Genetic algorithms
Simulated annealing
Strings
title String Model Building on Quantum Annealers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=String%20Model%20Building%20on%20Quantum%20Annealers&rft.jtitle=arXiv.org&rft.au=Abel,%20Steven%20A&rft.date=2023-06-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2831673816%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831673816&rft_id=info:pmid/&rfr_iscdi=true